

GOYDER INSTITUTE FOR WATER RESEARCH MODEL METADATA TEMPLATE

METADATA REQUIRED	DETAILS
Model Name and version	HYDRUS 2D model
Date of lodgement of	September 2015
Metadata Template.	Vinod Phogat, SARDI
Name of Metadata Provider	
Goyder Institute Project	GOYDER INSTITUTE FOR WATER RESEARCH Project No. 1.1.4
Number and Name	Integrated catchment water planning support for Adelaide Mount Lofty
	Ranges Water Allocation Planning
Project Team	Task 3:
	Nick Potter, CSIRO, <u>Nick.Potter@csiro.au</u>
	Justin Hughes, CSIRO, <u>Justin.Hughes@csiro.au</u>
	Vinod Phogat, SARDI, <u>Vinod.Phogat@sa.gov.au</u>
Creator/Developer	Vinod Phogat
	Vinod.Phogat@sa.gov.au
Owner/Contact Person and	Vinod Phogat
contact details	Vinod.Phogat@sa.gov.au
Model Location	SARDI G:\Water Resources - backed up daily – access only available to
	SARDI Water Resources staff who are nominated on the licence
IP or other permission	No IP permission required
requirements	
Licences associated with	License required to use HYDRUS 2/3D available from
model and/or dependencies	http://www.pc-progress.com/en/Default.aspx?h3d-pricing#k1
Confidentiality agreements	No
associated with model	
and/or dependencies	
Brief outline of model	HYDRUS is a Microsoft Windows based modelling environment for the
	analysis of water flow and solute transport in variably saturated porous
	media. The software package includes computational finite element models
	for simulating the two- and three-dimensional movement of water, heat,
	and multiple solutes in variably saturated media. The model includes a
	parameter optimization algorithm for inverse estimation of a variety of soil
	hydraulic and/or solute transport parameters. The model is supported by an
	interactive graphics-based interface for data-pre-processing, generation of
	structured and unstructured finite element mesh, and graphic presentation
	of the results. HYDRUS-1D is free download from the website
	(<u>http://www.pc-progress.com/en/default.aspx</u>). However, HYDRUS 2D and
	3D requires license. There is huge published literature on the software
	website and user's manual and technical manual available free download.
Area/region covered	Scott River catchment, Mt Lofty Ranges, South Australia
Platform and language and	PC window based, system requirements: Windows XP or later version (32
version	or 64 bit), X86CPU with 2 GHz, 2 MB RAM, 10GB hard disk with 500 MB
	space for software installation, Graphic card. Program Language: FORTRAN
	77. Version: HYDRUS 3D, version 2.04

METADATA REQUIRED	DETAILS
Dependencies upon: i) other models and/or platforms (including version) and location ii) essential data and data sources and location	i) No model dependencies
	 i) Data used: SILO PET and rainfall (https://www.longpaddock.qld.gov.au/silo/ppd/index.php) 2. Groundwater data sourced from: Banks, E.W., Simmons, C.T., Love, A.J., Cranswick, R., Werner, A.D., Bestland, E.A., Wood
	M., Wilson, T., 2009. Fractured bedrock and saprolite hydrogeologic controls on groundwater/surface-water interaction: a conceptual model (Australia). Hydrogeol. J. 17, 1969–1989.
	 Scott Creek gauged streamflow for infiltration estimates <u>www.waterconnect.gov.au</u>
	4. Hydraulic parameters of the geological layers
	5. Vegetation parameters, root depth, LAI for converting ET into potential transpiration and potential evaporation
	Data on hydraulic parameters and ET components are located at CSIRO server: <u>\\wron\project\GWAP\DAP\Task3_HYDRUS_modelling</u>

METADATA REQUIRED	DETAILS
How was model used	 Parameterisation/Validation (if applicable; provide a brief summary and include time period of calibration/simulation) Domain 2D, 335m horizontal, vertical, 42m on left and 56m on right, nodes= 22528, elements= 44171, Discretization: 1m, refinement on stream surface= 0.3m, rest of the surface refinement= 0.5m. Calibration: 15th July, 2005 to 31st December, 2006, validation: 1st January to 31st December, 2007; backward run: 1st January, 2000, forward run: 31st December, 2012. Quantifies daily dynamics of water balance and flux exchange between surface and groundwater flows.
	 Scenarios and outputs from various runs (provide a brief summary and indicate where these are stored) Scenarios includes the impact of anisotropy of geological materials, width and conductivity of clogging layer, type of vegetation and depth of water table on the state of connection between creek and groundwater. Dynamics of connectivity under different land use scenarios are assessed. (Information stored at SARDI Water resources G: Drive).
	 Assumptions behind model (provide a brief summary and indicate where these are stored) Assumptions: no temperature effect on flow, no solute stress on water uptake, no hysteresis, passive root water uptake only, water content tolerance= 0.0001, pressure head tolerance = 0.002m, lower limit of tension interval = 1x10⁻⁶, upper limit of tension interval= 150m, surface length for transpiration= 335m.
	 Limitations of model(provide a brief summary) Limitations: program terminates when water table reaches upper boundary. Program can't handle two boundaries on the same node, it terminates when water content extends the lower and upper limits.
	 Peer review process (if applicable) Peer reviewed by CSIRO internal review and research paper is under internal review.
	 Extensibility of model (can it be run for different time periods) It can run on extended time periods.

METADATA REQUIRED	DETAILS
Specificity of data	Was data sourced from local field sites or literature
	Domain characterization based on Banks et al. (2009). Hydraulic
	parameter values also obtained from Banks, et al. (2009), but final
	values were optimized to match water table and groundwater
	Rooting denth/vegetation characteristics estimates and
	evaporation/transpiration relationships taken from literature. Stress
	response function from literature and HYDRUS data base.
Datasets/data products	Include details of where datasets/products are located and contact
produced	details in the storage location
	Data set is located at CSIRO server:
	\\wron\project\GWAP\DAP\Task3_HYDRUS_modelling
	And also at SARDI drive G:\Water Resources
Other Information	
Publications (papers and	Potter, N.J, J.D. Hughes, V. Phogat, D. King, and R. Bridgart, 2015, Low
technical reports)	flows hydrology in the Mount Lofty Ranges, Goyder Institute for Water
	Research Technical Report Series No. 15/28, Adelaide, South Australia.
	Technical Reports are available from Govder Institute website
	http://govderinstitute.org/
Collaborations and	Eddie Banks, Graham Green, DEWNR, and others
acknowledgements	
Keywords	Hydrus;surface-groundwater connectivity;Scott Creek;land use

