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Executive Summary 
This is the second volume of three final reports for the University of Adelaide component of Task 4: 

Application Test Bed. This report provides a hydrological evaluation of the downscaled simulations from 

Task 3, “Downscaling and climate change projections for South Australia”, which uses the non-

homogenous hidden Markov model (NHMM) to provide projections of rainfall and other 

hydrometeorological variables (namely, temperature, radiation, humidity and pressure). The comparison 

is made based on reanalysis data and hindcasts of a range of general circulation models that have been 

downscaled using the NHMM. Three sub-catchments of the Onkaparinga catchment (Scott Creek, Echunga 

Creek and Houlgrave Weir) are used for the case study because of the availability and quality of 

observational data and its importance as a water supply catchment for the Adelaide region.  

The downscaled hydrometeorological forcing variables are converted into catchment-average rainfall and 

potential evapotranspiration (PET) and then run through the calibrated hydrological model GR4J. This was 

done for the reanalysis simulations, five climate models of the World Climate Research Program Coupled 

Model Intercomparison Project Phase 3 (CMIP3) and 15 CMIP5 climate models. One hundred NHMM 

simulations from each model were compared to simulated flows using observed rainfall and PET (the 

‘observed-climate flows’). The results were assessed using a range of metrics, including: (a) annual average 

flows; (b) the 10th, 50th, 95th and 99th percentiles of the daily flow duration curve (FDC); and (c) the annual 

coefficient of variation.  

Reanalysis data 

The reanalysis runs are based on the NCEP/NCAR reanalysis product, which is a global gridded dataset of a 

range of atmospheric variables that are designed to approximate historical conditions. The “reanalysis-

climate” flows are estimated using the NHMM simulations of rainfall and PET based on the atmospheric 

variables from the NCEP/NCAR reanalysis product, and then running them the hydrological model (GR4J). 

These are compared against the “observed-climate” flows which are based on using the observed rainfall 

and PET run through the hydrological model. This provides the most suitable data to assess the 

performance of the NHMM to provide reliable streamflow predictions using historical rainfall and PET 

conditions. The outcomes of the analysis are as follows: 

 Median annual average reanalysis-climate flows underestimated observed-climate flows (8-25%), 

although observed-climate flows were within the uncertainty bounds of reanalysis-climate flows; 

 Median annual coefficient of variation from the reanalysis-climate flows underestimated the 

observed-climate coefficient of variation (8-12%), although observed-climate flows were within the 

uncertainty bounds of the reanalysis-climate coefficient of variation;  

 Median 10th percentile of the reanalysis-climate FDC overestimated observed-climate flows by 12% at 

Scott Creek and by 3% at Houlgrave Weir, and underestimated flows by 2% at Echunga Creek; 

 Median 50th percentile of the reanalysis-climate FDC flows was well simulated at Scott Creek and 

Echunga Creek, and slightly overestimated (but well within the uncertainty bounds) at Houlgrave 

Weir; and 

 Median 99th percentile of the reanalysis-climate FDC was underestimated for all catchments (19-30%), 

and observed-climate flows were outside the uncertainty bounds for all cases except Echunga Creek.  

The results indicate that the NHMM produces biased estimates of rainfall and/or PET, leading to an 

underestimate in average and high flows relative to simulated flows obtained using observed rainfall/PET.  

GCM results 

The NHMM was conditioned on GCM predictions of atmospheric variables and then run through the 

hydrological models. These “GCM-climate” flows enable the assessment of whether the GCM+NHMM 
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combination can provide reliable historical-climate streamflow estimates. Results from the CMIP3 and 

CMIP5 GCM runs were largely consistent with the reanalysis-based results, although the biases were on 

average slightly lower. Specific conclusions are as follows: 

 The median annual average GCM-climate flows underestimated observed-climate flows for most 

GCMs in Scott Creek (five out of 19 models) and Houlgrave Weir (all models), and was similar to 

observed-climate flows at Echunga Creek (a similar number of over- and under-estimations). 

 The median annual GCM-climate coefficient of variation ranged widely (-15 to + 18% of the observed-

climate coefficient of variations), and the observed-climate coefficient of variation was in all cases 

within the simulated uncertainty bounds.  

 The median 10th percentile of the GCM-climate FDC overestimated observed-climate flows for all 

catchments and models. 

 The median 50th percentile of the GCM-climate FDC flows was on average well simulated by most 

models, with a similar number of over- and under-estimations. The exception is for Echunga Creek, 

where GCM-climate FDC flows overestimated observed-climate flows for all GCMs. 

 The median 99th percentile of the GCM-climate FDC underestimated observed-climate flows in all 

cases, except for Echunga Creek where six out of 19 models overestimated observed-climate flows.  

Investigation of observed high flow biases 

The underestimation of high flows and annual flow volumes and overestimation of low flows from the 

reanalysis-climate simulations suggests that the NHMM may be producing systematic biases in the rainfall 

statistics. Quantile correction of the rainfall (as well as the PET) series was therefore performed to further 

investigate these biases. Interestingly, some biases remained after quantile correction, indicating that the 

marginal distributions of rainfall and PET were not fully responsible for the flow bias. Seasonality in rainfall 

was also well-preserved after quantile correction. However, the reanalysis-climate multi-day extreme wet 

days were systematically underestimated due to the difficulty in preserving Markovian dependence in 

extremes.  It is therefore likely that biases in flow quantiles are due to the following two factors: 

(1) The multi-day consecutive wet spell intensity is underestimated by the NHMM algorithm, so that 

biases remain even after quantile-correcting the marginal precipitation and PET distributions. This can 

lead to an underestimation in extreme rainfall periods, which are a major contributor to the total 

annual flows; and 

(2) The runoff coefficient in the Onkaparinga is low (e.g. 0.14 at Houlgrave Weir), and the flows are highly 

‘elastic’, with small changes in rainfall leading to large changes in runoff. This implies that small rainfall 

errors are likely to be amplified in predicted flows.  

Neither of these factors are addressed easily – the issues with day-to-day dependence are inherent issues 

associated with the NHMM architecture, whereas the high sensitivity of the Onkaparinga catchment to 

potentially small errors in rainfall are due to the semi-arid catchment hydrology.  

Implications 

The biases in the streamflow produced by the downscaling NHMM algorithm are sufficiently large that 
they cannot be treated as negligible. However, developing approaches to address this issue is not 
straightforward. Future research is needed to improve downscaling techniques so that they can reproduce 
the simulation of multi-day rainfall amounts and that these approaches are tested using a split-sample 
procedure. Until this is undertaken, it is recommended that a pragmatic “relative change” approach be 
adopted to assess the impact of climate change on streamflow in the Onkaparinga catchment, and that 
users be aware of the assumption that the biases in the historical period are the same as future climate 
period.  This “relative change” approach is adopted in the third volume of this report.   
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1 Introduction 

This is the second of three final reports for the University of Adelaide component of Task 4: 

Application Test Bed for the Goyder Climate Change project. The overall Goyder Climate Change 

project aims to develop a benchmark suite of downscaled climate projections and climate variable 

time series for South Australia. The contribution of Task 4 is to apply the downscaled data in a series 

of hydrology test cases to provide iterative feedback on the overall downscaling activity throughout 

the project lifecycle.  

The Onkaparinga catchment has been identified as the case study location for this project. The 

catchment was selected because of the availability and quality of observational data and its 

importance as a water supply catchment for the Adelaide region. The University of Adelaide 

component of Task 4 involves applying the rainfall-runoff model ‘GR4J’ [Perrin et al., 2003] to three 

sub-catchments in the Onkaparinga: Houlgrave Weir, Echunga Creek and Scott Creek. Each of these 

sub-catchments has long records of historical daily flows, and collectively they represent the 

majority of the flow volume in the Onkaparinga upstream of the Happy Valley diversion. This enables 

the downscaled hydrometeorological forcing variables (rainfall, temperature, radiation, humidity 

and pressure) to be tested by comparing simulated flows obtained from historically-forced GCMs 

with flows obtained from instrumental records of rainfall and potential evapotranspiration (PET). 

The implications of future climate change on flows in the three sub-catchments can then be 

evaluated.   

The work has been divided into the following three reports: 

Report 1: Hydrological Model Development and Sources of Uncertainty. This report focuses 

on assessing the relative contribution of the principal sources of hydrological model 

uncertainty: input errors, output errors and model structural errors. The Bayesian Total Error 

Analysis methodology is used as the basis of the analysis. Findings are used to improve the 

model structure, and develop a set of models that can be used to produce the climate 

projections.   

The outcome was the development of a set of non-stationary hydrological model structures 

that led to improvements in the prediction of flows during a drier confirmatory period.  

Report 2 (this report): Hydrological evaluation of Non-homogenous Hidden Markov Model 

(NHMM) projections. This report describes the comparison of historical flows in three sub-

catchments of the Onkaparinga. Estimated flows are obtained by passing the NHMM 

projections of rainfall and other meteorological variables through a calibrated hydrological 

model. A total of five General Circulation Models (GCMs) from the Coupled Model 

Intercomparison Project Phase 3 (CMIP3) archive, 15 GCMs from the CMIP5 archive and a 

reanalysis model run are evaluated.  

Report 3: Impact of climate change on flows in the Onkaparinga catchment. This report 

outlines projections for future flows in the Onkaparinga catchment, for 30-year future time 

slices centred on 2030, 2050, 2070 and 2085. Attributes of future flows include aggregate 

annual and seasonal flow patterns, low flows and peak high flows.  
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2 Overview of this Report 

This report describes the hydrological evaluation of the non-homogenous hidden Markov model 

(NHMM). This model has been developed over a period of more than a decade [Bates et al., 1998; 

Charles et al., 1999a; Charles et al., 1999b; Hughes et al., 1999], and was found to perform 

reasonably in benchmark studies based on a range of average and extreme rainfall statistics [Frost et 

al., 2011]. The NHMM simulations were developed by the CSIRO as part of Task 3 of the Goyder 

Climate Change project, with an important contribution of Task 4 being assess the hydrological 

performance of the downscaled datasets generated in Task 3. 

This report draws largely from the third milestone report [Westra et al., 2013], which focused on 

evaluating the NHMM simulations based on the NCEP reanalysis as well as historical runs from five 

GCMs in the CMIP3 archive. Since that report, several versions of simulations from 15 climate 

models in the CMIP5 archive have also been made available, and the historical simulations from 

these models were assessed. This report describes the results from one of the most recent sets  

(set 9) of the CMIP5 NHMM simulations.  

The remainder of this report is structured as follows. In Section 3, the metrics used to evaluate 

climate model performance in simulating flows in the Onkaparinga are provided. This is followed by 

a summary of the evaluation of the reanalysis and CMIP3 models (Section 4), and of the more recent 

CMIP5 models (Section 5). A detailed analysis of possible biases in high flows is then given in Section 

6, including an analysis of the implication of quantile-correcting rainfall and potential 

evapotranspiration prior to use in simulations. Finally, discussion and conclusions are provided in 

Section 7.  
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3 Hydrological Performance Metrics 

A number of performance metrics were selected to compare flows estimated using historical rainfall 

and potential evapotranspiration (henceforth referred to as the ‘observed-climate flows’) with flows 

estimated using the NHMM simulations obtained using the reanalysis and GCM hindcast data (the 

‘reanalysis-climate’ or ‘GCM-climate’ flows). Flows were derived using the calibrated version of the 

standard version of GR4J described in volume one of this report series. Metrics include: 

 Annual flow statistics, including estimates of annual average flows, the coefficient of variation, 

low flow years, and time series of annual flows (for the reanalysis data only). These metrics are 

important for water security and drought risk assessments. 

 Seasonal flow statistics, which evaluate whether the seasonal cycle and thus the timing of flows 

throughout the year is adequately preserved. This is critical in highly seasonal catchments such 

as those in the Onkaparinga, and provides important information for water security assessments 

and the setting of environmental flows.  

 Flow duration curves, which provide an overview of how well the simulated flows represent the 

full distribution of observed-climate flows. We calculate flow duration curves (FDCs) over (i) all 

flow days; (ii) the highest two percent of flow days; (iii) individual seasons; and (iv) rising and 

falling limbs of the hydrograph. The curve for the top two percent of flow days is useful given the 

importance of high flows to the total water balance; for example in Scott Creek, the top two 

percent of flow days, comprising about seven days per year, accounts for 35% of the total flow 

volume (see Section 6.4 in volume one of this series). Furthermore, given that flows in summer 

in the Onkaparinga are significantly lower than in winter, it is helpful to analyse flow duration 

curves separately by season. Finally, examining different portions of the hydrograph assists in 

diagnosing possible sources of biases associated with hydrograph peaks or hydrograph 

recessions. FDCs are useful for water allocation modelling, setting environmental flows and (for 

the highest portion of the FDC) providing an indication of flood risk. 

 Summary statistics, including annual average flows and various flow percentiles, are useful to 

enable comparison between a large number of models and between simulations. The 

percentiles selected for analysis are the (i) 10 percentile flows, which are useful for allocation of 

environmental flows; (ii) median flows; and (iii) high flows, including the 95 and 99 percentiles. 

Note that the NHMM algorithm is not designed to capture extreme precipitation events; 

therefore caution is required when interpreting the 99 percentile flow as a surrogate for 

extreme flows such as those that cause floods. Each of the above statistics are calculated for 

each of the 100 NHMM simulations, and the 5, 25, 50, 75 and 95 percentiles from these runs are 

presented to provide an indication of model spread. 

To illustrate the application of each metric, several example plots for each metric are given below 

using Scott Creek data. Similar figures describing these performance metrics for the reanalysis and 

GCM hindcasts and for the three sub-catchments were given in Westra et al. [2013] for the CMIP3 

simulations, and the results are summarised in Section 4.  The CMIP5 simulations produced results 

that are consistent with the CMIP3 simulations, and thus only some summary plots are presented for 

these models (Section 5).  
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3.1   Annual flow statistics 

The time series of annual flows at Scott Creek catchment is given in Figure 1. In the case of the 

reanalysis data, the annual flows simulated from observed rainfall and APET can be expected to 

match the downscaled estimates, because the large-scale hydroclimatic forcings should be 

equivalent. This can be seen in the figure, with years that have high observed-climate flows typically 

also being high when using reanalysis data, and vice versa. There is some evidence that the observed 

data has a greater level of variability compared to the modelled data, with 11 out of 16 years of 

observed data being outside the 50% reanalysis-based intervals in this plot. This is particularly 

evident for the high flow years, which can also be seen when comparing the 90th percentile of the 

annual flows between observed-climate flows and simulated-climate flows (Table 1).  

 

Figure 1: Annual total flows from 1985 to 2000 at Scott Creek. Upper and lower ‘hinges’ represent 

the 25th and 75th percentiles of the reanalysis data, respectively, while the whiskers extend to 1.5 

times the interquartile range. Dots represent points beyond the whiskers.  

 

The finding of a slight underestimation in variance can also be seen from the annual coefficient of 

variation statistics presented in Table 1. The observed-climate coefficient of variation is within the 

90 percent uncertainty interval from the reanalysis-climate simulations, so it is unclear whether this 

is random variation or a systematic bias.  

3.2    Seasonal flow statistics 

The monthly average flow rate in the catchment is given in Figure 2, and again shows that the flows 

generated using observed rainfall and potential evapotranspiration were within the bounds of the 

flows obtained using downscaled rainfall and potential evapotranspiration driven by reanalysis data. 

The distinct seasonality of flows in Scott Creek is clearly evident, with the majority of flows occurring 
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in the months from June to October. Generally the flows from observed rainfall and APET are above 

the median flows from the reanalysis data, although they are well within range of reanalysis results.  

 

 

Figure 2: Monthly average flow. 

3.3   Flow duration curves 

The flow duration curve describes the percentage of time that a flow rate in a stream is equal to or 

greater than a given value. The flow duration curve obtained from the standard version of GR4J 

using the observed rainfall and APET data (blue line), as well as the reanalysis data (grey lines), is 

given in Figure 3. Generally, the observed curve falls within the bounds of the curves generated from 

reanalysis data. For high-flows, the reanalysis data seems to underestimate flows slightly (Figure 4), 

whereas for low flows, the reanalysis data overestimates flows slightly. In all cases, observed-climate 

flows are within the range of the reanalysis-climate flows. 
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Figure 3: Flow duration curve for Scott Creek based on reanalysis climate data.  

 

Figure 4: Flow duration curve for Scott Creek based on reanalysis climate data – top 2% of flows.  

Finally, summary statistics are given in Table 1, again based on the reanalysis data. The observed-

climate data is slightly above the 75 percentile of the simulated runs in terms of the annual mean 

and 99 percentile flows, and below the 25 percentile of the simulated runs for the 5 percentile flow. 

Nevertheless for all these statistics the observed flow is well within the range of simulated values.  
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Table 1: Summary statistics from the reanalysis data at Scott Creek. The observed-climate flows 

represents flows from the calibrated GR4J using observed rainfall and PET inputs, while the 

simulated runs are based on the NCEP reanalysis. Units of mm.  

  Percentile from the simulated runs 

Metrics  Observed-

climate flows 

5 25 50 75 95 

Annual mean 142 108 116 125 132 143 

Annual standard 

deviation 

69.6 42.2 50.0 55.6 62.4 72.3 

Annual coefficient of 

variation 

0.491 0.348 0.419 0.451 0.487 0.552 

10th percentile of 

annual flows 

64.8 41.4 52.3 58.9 64.8 78.8 

90th percentile of 

annual flows 

224 159 175 193 208 236 

10th percentile of daily 

flows 

0.00203 0.00200 0.00212 0.00228 0.00242 0.00261 

50th percentile of daily 

flows 

0.0407 0.0345 0.0392 0.0423 0.0466 0.0498 

95th percentile of daily 

flows 

1.80 1.35 1.48 1.62 1.75 1.90 

99th percentile of daily 

flows 

5.32 3.52 3.92 4.26 4.57 5.16 
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4 Assessment of Simulations from the Reanalysis and  

CMIP 3 Archive 

In this section, the results from the reanalysis data and the hindcasts from five GCMs listed in Table 

2 are presented as a set of summary statistics. The statistics are provided for Scott Creek (Figure 5), 

Echunga Creek (Figure 6) and Houlgrave Weir (Figure 7) catchments. For the reanalysis data and 

each GCM, 100 daily resolution NHMM simulations were provided by CSIRO at each catchment, and 

the box-and-whisker plots produced in the figures depict the minimum value, the 25, 50 and 75 

percentile values and the maximum value of each statistic across all the 100 simulations.  

Table 2: List of CMIP3 climate models used for the analysis 

Climate model ID Climate Modelling Group Country 

GFDL CM2.0 U.S. Dept. of Commerce/NOAA/Geophysical Fluid 

Dynamics Laboratory 

USA 

GFDL CM2.1 U.S. Dept. of Commerce/NOAA/Geophysical Fluid 

Dynamics Laboratory 

USA 

MIROC3.2 (medres) Centre for climate System Research (The University of 

Tokyo), National Institute for Environmental Studies, 

and Frontier Research Centre for Global Change 

Japan 

CSIRO-Mk3.5 Commonwealth Scientific and Industrial Research 

Organisation, Atmospheric Research 

Australia 

ECHAM5/MPI Max Planck Institute for Meteorology Germany 

 
The median of the NHMM results are summarised in Table 3, showing areas of consistent over- and 
under-estimation of the reanalysis-climate and GCM-climate relative to the observed-climate flows. 
The conclusions are summarised in Sections 4.1-4.5 below.  
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Table 3: Percentage difference between the median reanalysis/GCM-climate flow and the 

observed-climate flows. GCM results are presented as a range for the five CMIP3 GCMs. Negative 

sign means the reanalysis/ GCM-climate flows underestimates observed flows, whereas positive 

sign means the reanalysis/ GCM-climate flows overestimate observed flows.  

Simulation/Statistic Catchment 

Scott Creek Echunga Creek Houlgrave Weir 

Reanalysis    

Average annual flows -12% -25% -8% 

CV of annual flows -8% -8% -12% 

Low (10
th

 percentile) daily flows +12% -2% +3% 

Median (50
th

 percentile) daily flows  +4% 0% +8% 

High (99
th

 percentile) daily flows -20%
*
 -30% -19%

*
 

GCM    

Average annual flows -11% to +1% -8% to +15% -14%
*
 to -2% 

CV of annual flows -2% to 17% -9% to 18% -15% to -4% 

Low (10
th

 percentile) daily flows  +11% to +25% +2% to +60%
*
 +1% to +14% 

Median (50
th

 percentile) daily flows  -14% to +6% +1% to +47%
*
 -11% to +13% 

High (99
th

 percentile) daily flows  -18%
*
 to -9% -15% to 0% -22%

*
 to -15%

*
 

*
 at least one of the observed-climate flows are outside the 90% uncertainty interval of the NHMM flows 
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Figure 5: Box and whisker plots of average annual flow, and the 10, 50 and 99 percentiles of the 

flow duration curve based on models from the CMIP3 archive, for Scott Creek catchment. The 

observed-climate value is given by the blue horizontal line. The box describes the 25, 50 and 75 

percentile values obtained from the 100 NHMM simulations, whereas the whiskers indicate the 5 

and 95 percentile values.  
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Figure 6: As per Figure 5 but for Echunga Creek.  
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Figure 7: As per Figure 5 but for Houlgrave Weir.  
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4.1   Annual flow volume  

The results for annual flow volumes (top left panel in Figure 5-Figure 7) are summarised as follows: 

 Reanalysis results 

o The median annual average reanalysis-climate flows underestimated observed-climate 

flows (8-25%), although the observed-climate flows were within the uncertainty bounds 

of reanalysis-climate flows; 

o It is likely that the bias in annual flows is due to the bias in simulation of high flow events 

(see 99th percentile flow results below), since a small number of high-flow days 

contribute towards a large proportion of the annual water balance.  

 GCM results 

o The median annual average GCM-climate flows underestimated observed-climate flows 

for most GCMs in Scott Creek (four out of five models) and Houlgrave Weir (all models), 

and was similar to observed-climate flows at Echunga Creek (a similar number of over- 

and under-estimations); 

o The observed flows were within the uncertainty bounds for Scott Creek and Echunga 

Creek, and above the uncertainty bounds for three models (GFDL20, GFDL21 and CSIRO-

MK3.5) at Houlgrave Weir.  

4.2    Annual coefficient of variation (CV) 

The results the annual coefficient of variation (top right panel in Figure 5-Figure 7) are summarised 

as follows: 

 Reanalysis results 

o The reanalysis-climate CV is slightly below the observed-climate CV for all three 

catchments, but the observed-climate CV is well within the reanalysis-climate 

uncertainty bounds for all cases.  

 GCM results3 

o There is some variation between GCM-climate CV values, with some GCMs 

overestimating observed-climate CV values, while other GCMs underestimate observed-

climate CV values. The exception is for Houlgrave Weir, with all GCMs underestimating 

observed-climate CV values. In all cases, the observed-climate CV values are within the 

uncertainty bounds of the GCM-climate CV values.  

4.3    Daily low flows (10th percentile flows) 

The results the daily low flows (middle left panel in Figure 5-Figure 7) are summarised as follows: 

 Reanalysis results 

o Reanalysis-climate low flows overestimated observed-climate flows by 9% (Scott Creek) 

and 6% (Houlgrave Weir), and underestimated observed-climate flows by 9% (Echunga 

Creek). In all cases, the results were within the uncertainty bounds from the NHMM 

simulations.  

 GCM results 

o GCM-climate low flows overestimated observed-climate low flows for all catchments 

and GCMs (except for GFDL20, GFDL21 and CSIRO MK3.5 at Echunga Creek), although 

the observed data were mostly within the uncertainty bounds. The exception is for 
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MIROC3.2 (medres) and ECHAM/MPI, for which the observed-climate flows were 

outside of the uncertainty bounds of the GCM-climate flows at all catchments.   

4.4   Daily median flows (50th percentile flows)  

The results the daily median flows (middle right panel in Figure 5-Figure 7) are summarised as 

follows: 

 Reanalysis results 

o Reanalysis-climate flows are well simulated at Scott Creek and Echunga Creek, and were 

slightly above observed-climate flows (but well within the uncertainty bounds) at 

Houlgrave Weir.  

 GCM results 

o For Scott Creek and Houlgrave Weir, some GCMs overestimated and other GCMs 

underestimated median flows, with no obvious pattern. Observed-climate flows were 

well within the GCM-climate uncertainty bounds for all GCMs.  

o For Echunga, GFDL20, GFDL21 and CSIRO-MK3.5 performed well, but MIROC3.2 

(medres) and ECHAM/MPI overestimated observed-climate flows by close to 50%. Note 

that the median daily flow rate is about an order of magnitude lower than the mean 

daily flow rate (0.0152mm/day vs 0.22mm/day), and therefore the flow bias for the 50th 

percentile flows will not significantly impact on total annual flow volume.  

4.5   Daily high flows (95th and 99th percentile flows)  

The results the daily high flows (bottom panels in Figure 5-Figure 7) are summarised as follows: 

 Reanalysis results 

o Reanalysis-climate high flows underestimated observed-climate high flows in all cases, 

with a greater degree of underestimation for the 99th percentile high flows compared to 

the 95th percentile high flows. The observed-climate high flows were inside the 

reanalysis-climate uncertainty bounds for all cases of the 95th percentile flow, and also 

for Echunga for the 99th percentile high flows. In contrast, the 99th percentile observed 

flow for Scott Creek and Houlgrave Weir were outside the reanalysis-climate uncertainty 

bounds.  

 GCM results 

o At Scott Creek, three GCMs underestimated observed-climate 95th percentile flows, one 

overestimated observed-climate 95th percentile flows, and was equal to observed-

climate flows. In contrast, GCM-climate 99th percentile flows were below observed 

climate flows in all cases, and the uncertainty bounds of GFDL21 and CSIRO-MK3.5 did 

not span the observed flows, while they did for the remaining GCMs.  

o The Houlgrave Weir results were consistent with the Scott Creek results. For the 99th 

percentile flow, the observed-climate flows were outside the GCM-climate uncertainty 

bounds for all GCMs. 

o For Echunga Creek, the high flows were much better simulated than the reanalysis data, 

and were within the uncertainty bounds in all cases.  

4.6   Summary 

This section described the performance of the reanalysis-climate flows relative to observed-climate 

flows, as well as the GCM-climate flows obtained from five CMIP3 GCMs. Of these, the reanalysis-
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climate results deserve particular attention, as the large-scale climate variables used as predictors to 

the NHMM algorithm are estimates of the historical climate conditions, so that the evaluation 

specifically tests the capacity of the NHMM to simulate the statistics of historical rainfall and PET.  

The reanalysis-based results show that the model typically underestimates annual average flows by 

between 8 and 25%, although the uncertainty bounds are also wide with some simulations leading 

to annual average flows that are higher than the observed-climate flows. Examination of various 

percentiles of the flow duration curve suggest that the primary reason for underestimation of annual 

flows is due to the underestimation of very high flow days, particularly for flows around the 99 

percentile of the flow duration curve. As described in Section 3, these high flows are a significant 

portion of the total annual water balance, and thus are capable of influencing annual flow statistics. 

The coefficient of variation is a useful statistic for catchment yield estimates, and reanalysis-climate 

CV values were typically lower than observed-climate CV values, although the observed-climate CV 

values were within the reanalysis-climate uncertainty bounds. Finally, the reanalysis-climate low 

flows (measured as the 10th percentile of the flow duration curve) were typically higher than the 

observed-climate low flows, with potential implications for environmental flow allocation. 

The GCM-climate flows exhibited some variability across all the flow statistics, but generally the 

results were reasonably consistent with the reanalysis-climate flows. Biases in annual average flows 

were typically less severe compared to reanalysis-climate flows, except for three GCMs at Houlgrave 

Weir. The most pronounced biases were associated with the 99th percentile flows, however the 

magnitude of underestimation was slightly lower than for the reanalysis-climate flows.  
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5 Assessment of Simulations from the CMIP 5 Archive 

The analysis presented in Section 4 is now repeated using 15 general circulation models from the 

CMIP 5 archive, which are described in Table 4. The statistics are provided for Scott Creek (Figure 8), 

Echunga Creek (Figure 9) and Houlgrave Weir (Figure 10) catchments. As before, 100 daily resolution 

NHMM simulations were provided by CSIRO at each catchment, and the box-and-whisker plots 

produced in the figures depict the 5, 25, 50 and 75 and 95 percentile values of each statistic across 

all the 100 simulations.  

Table 4: List of CMIP5 climate models used for the analysis 

Climate model ID Climate Modelling Group Country 

ACCESS1-0 Commonwealth Scientific and Industrial Research 

Organisation and Bureau of Meteorology 

Australia 

ACCESS1-3 Commonwealth Scientific and Industrial Research 

Organisation and Bureau of Meteorology 

Australia 

BCC-CSM1-1-M Beijing Climate Centre, China Meteorological 

Administration 

China 

CanESM2 Canadian Centre for Climate Modelling and Analysis Canada 

CNRM-CM5 Centre National de Recherches Météorologiques / 

Centre Européen de Recherche et Formation Avancée 

en Calcul Scientifique 

France 

CSIRO-Mk-3.6 Commonwealth Scientific and Industrial Research 

Organisation, Queensland Climate Change Centre of 

Excellence 

Australia 

GFDL-ESM2G NOAA Geophysical Fluid Dynamics Laboratory USA 

GFDL-ESM2M NOAA Geophysical Fluid Dynamics Laboratory USA 

INM-CM4 Institute for Numerical Mathematics Russia 

IPSL-CM5A-LR Institut Pierre-Simon Laplace France 

IPSL-CM5B-LR Institut Pierre-Simon Laplace France 

MIROC.ESM Japan Agency for Marine-Earth Science and 

Technology, Atmosphere and Ocean Research 

Institute (The University 

of Tokyo), and National 

Institute for Environmental Studies 

Japan 

MIROC5 Atmosphere and Ocean Research Institute (The 

University of Tokyo), National Institute for 

Environmental Studies, and Japan Agency for 

Marine-Earth Science and Technology 

Japan 

MRI-CGCM3 Meteorological Research Institute Japan 

NorES1-M Norwegian Climate Centre Norway 
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The median of the NHMM results are summarised in Table 5, showing areas of consistent over- and 

underestimation of the GCM-climate flows relative to the observed-climate flows. The conclusions 

are summarised in Sections 5.1-5.6 below.  

 

Table 5: Percentage difference between the median reanalysis/GCM-climate flow and the 

observed-climate flows. GCM results are presented as a range for the five CMIP3 GCMs. Negative 

sign means the reanalysis/GCM-climate flows underestimate observed flows, whereas positive 

sign means the reanalysis/GCM-climate flows overestimate observed flows.  

Simulation/Statistic Catchment 

Scott Creek Echunga Creek Houlgrave Weir 

GCM    

Average annual flows -9% to +7% -8% to +25% -10% to 0% 

CV of annual flows -7% to +29%* -26% to +35% -27%* to +9% 

Low (10%ile) daily flows  +2% to +24%* -7% to +29% -5% to +7% 

Median (50%ile) daily flows  -20% to +14% +9% to +63%* -8% to +8% 

High (99%ile) daily flows  -17%* to -2% -16% to +18% -21%* to -9% 

*
 means that at least one of the observed-climate flows are outside the 90% uncertainty interval of the NHMM flows. 
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Figure 8: Box and whisker plots of average annual flow, and the 5, 50 and 99 percentiles of the 

flow duration curve based on models from the CMIP5 archive, for Scott Creek catchment.  
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Figure 9: As per Figure 8 but for Echunga Creek catchment.  
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Figure 10: As per Figure 8 but for Houlgrave Weir catchment. 

5.1   Annual flow volume  

The results for annual flow volumes (top left panel in Figure 8-Figure 10) are summarised as follows: 

 Scott Creek: The median GCM-climate flow from 11 out of the 15 models was lower than the 

observed-climate flow, with the median of the remaining four models being higher than the 

observed discharge. In all cases the observed-climate flow volume was within the uncertainty 

bounds of simulation results, with the observed-climate flows being within the interquartile 

range (i.e. between the 25 and 75 percentile simulated results) for seven out of the 15 models, 

as would be expected by random chance. The model with the greatest difference between 

median simulated flow and observed-climate flow (INM-CM4) underestimated annual flow by 

9.2%.  
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 Echunga Creek: The median GCM-climate flow from eight out of the 15 models was greater than 

the observed flow, with the observed-climate flow being within the interquartile range for 10 

out of the 15 models. The model with the strongest difference (CSIRO-Mk-3.6) overestimated 

flows by 25%.  

 Houlgrave Weir: The median flow from all models was lower than the observed-climate flow, 

except for IPSL-CM5B-LR which had median flow equal to the observed flow. Of these, the 

interquartile range was below the observed flow for 11 of the 15 models, suggesting the 

potential for a systematic underestimation of observed flow. The greatest underestimation was 

for MIROC5, with the median flow being 10% lower than the observed-climate flow. 

5.2   Coefficient of Variation (CV) 

The results for annual coefficient of variation (top right panel in Figure 8-Figure 10) are summarised 

as follows: 

 Scott Creek: The median GCM-climate CV was lower than observed-climate CV for 10 models, 

higher for four models, and equal to the observed-climate CV for one model. The observed-

climate CV values were within the interquartile range for eight out of the 15 models, as would be 

expected by random chance. Observed-climate CV values were outside the 90 percent 

confidence interval for only a single model (INM-CM4). 

 Echunga Creek: The median GCM-climate CV was lower than observed-climate CV for 13 models, 

higher for two models, and equal to the observed-climate CV for one model. The observed-

climate CV values were within the interquartile range for six out of the 15 models, as would be 

expected by random chance. Observed-climate flows were inside the 90 % uncertainty interval 

in all cases.  

 Houlgrave Weir: The median GCM-climate CV was lower than observed-climate CV for 13 models 

and higher for two models. The observed-climate CV values were within the interquartile range 

for four out of the 15 models, which is less than would be expected by random chance, 

suggesting that the GCM-climate CV values underestimate variability. Observed-climate flows 

were outside the 90 % uncertainty interval for six models.  

5.3   Daily low flows (10th percentile flows) 

The results for the daily low flows (middle left panel in Figure 8-Figure 10) are summarised as 

follows: 

 Scott Creek: The median GCM-climate 10th percentile flow was greater than the observed-

climate 5th percentile flow for all of the 15 models, with the observed flow being outside the 

interquartile range for 13 of these models. This suggests a systematic overestimation of low 

flows. The greatest overestimation was for model MIROC.ESM with the median flow being 18% 

greater than observed.  

 Echunga Creek: The median 10th percentile flow was greater than the observed-climate 10th 

percentile flow for 14 out of the 15 models, and observed-climate flows were only outside of the 

interquartile range for seven models, as would be expected by random chance. The greatest 

overestimation was for model CSIRO-Mk-3.6, with median simulated flow being 29% greater 

than the observed-climate flow.  

 Houlgrave Weir: Similar to Scott Creek and Echunga Creek, there was a systematic 

overestimation of low flows, with the median simulated flow being greater than the observed 

flow for all but two models (INM-CM4 and IPSL-CM5A-LR). The observed-climate flow was inside 
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the interquartile range for 12 of the 15 models, with the greatest overestimation being for 

model BCC-CSM1-1-M, and with median flow being 7% greater than observed flow.  

5.4   Daily median flows (50th percentile flows)  

The results for the daily median flows (middle right panel in Figure 8-Figure 10) are summarised as 

follows: 

 Scott Creek: The median GCM-climate 50 percentile flow was greater than the observed-climate 

50 percentile flow for four out of the 15 models, with the remaining models having median flows 

equal to or lower than observed. The observed-climate flow was inside the interquartile range 

for all but four models. The maximum underestimation of flows was for INM-CM4, with 

simulated median flow being 20% lower than observed flow.  

 Echunga Creek: The median GCM-climate 50 percentile flow was greater than the observed-

climate 50 percentile flow for all of the 15 models, with the observed-climate flow being inside 

the interquartile range for only three of the models. The model with the greatest overestimation 

was CSIRO-Mk-3.6, with the median flow being about 63% greater than observed. 

 Houlgrave Weir: Unlike the Echunga Creek results, the simulated results at Houlgrave Weir were 

consistent with observations, with seven models having median flows greater than observed and 

eight models having median flows less than observed. The observed-climate flow was within the 

interquartile range for all models, with the greatest discrepancy between median simulated flow 

and observed-climate flow being an overestimation of 8% for model GFDL-ESM2M.  

5.5   Daily high flows (99th percentile flows)  

The results for the daily high flows (bottom panels in Figure 8-Figure 10) are summarised as follows: 

 Scott Creek: the median GCM-climate 99 percentile flow was less than the observed-climate 99 

percentile flow for all of the 15 models, with observed-climate flow being within the 

interquartile range for only three models. The greatest underestimation of median flow relative 

to observed-climate flow was approximately 17% for model CanESM2, with CSIRO-Mk-3.6 and 

GFDL-ESM2G performing similarly. 

 Echunga Creek: the median GCM-climate 99 percentile flow was less than the observed-climate 

flow for 10 of the 15 models, and greater than observed-climate flow for five models. The 

observed-climate flows were within the interquartile range for five models, indicating that the 

climate model outputs provide a reasonable estimate of model spread. The greatest discrepancy 

was for model IPSL-CM5A-LR, with median flows being approximately 18% below above 

observed-climate flows. 

 Houlgrave Weir: Similar to Scott Creek but unlike Echunga Creek, the median 99 percentile flow 

was less than the observed-climate 99 percentile flow for all of the 15 models. Furthermore, the 

observed-climate flow was not only outside the interquartile range for all models, but was also 

outside the uncertainty bounds for 13 of the 15 models. This indicates a significant difference in 

simulation of high flows at Houlgrave weir. The median of the simulated flow was up to 21% 

below the observed-climate flow (model MIROC.ESM).  

5.6   Summary of CMIP5 results 

The results from the CMIP5 downscaled model runs were similar to the results from the CMIP3 

model runs that were summarised in Section 4. Observed-climate flows were typically within the 

uncertainty bounds of GCM-climate NHMM simulations, although there were also some areas of 
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consistent bias between GCMs, particularly relating to an underestimation of high flows and 

overestimation of low flows at Scott Creek and Houlgrave Weir catchment, and an overestimation of 

median flows at Echunga Creek catchment.  

The models that yielded the greatest discrepancy between the observed flow and the median of the 

simulated flow for at least one of the catchments and flow metrics were the GFDL models (GFDL-

ESM2G and GFDL-ESM2M) the MIROC models (MIROC.ESM and MIROC5), CSIRO-Mk-3.6 and INM-

CM4. Nevertheless, visual inspection of the results for all the simulations and catchments showed 

that any underestimation or overestimation by these models was generally consistent with the 

remaining models from the CMIP5 simulations. This means that no clear ‘outlier’ models (i.e. models 

that performed consistently worse than other models) were identified for removal or further 

scrutiny.  

In some cases, the within-model variability (indicated by the interquartile range and 90 % 

uncertainty interval) was wider than the between-model variability. However as will be shown in the 

third volume of this report, the between-model variability becomes substantially higher when 

considering future GCM-derived projections. For this reason, we do not recommend using a single 

model or small subset of models to develop future climate projections.  

The issue of consistent underestimation of high flows is important, as a significant proportion of the 

total annual flow occurs in a small number of wet days. (see Table 6) Therefore, in the following 

section we investigate the possible reasons for these biases and how they contribute to biases in the 

total flow volume.  
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6 Investigation of Biases in NHMM Runs 

Based on results from the reanalysis-climate and GCM-climate flows using both the CMIP3 and 

CMIP5 archives, there is a tendency for hydrological simulations forced by NHMM data to 

underestimate high flows and overestimate low flows, with the net effect being that average annual 

flows are underestimated. We now further investigate simulations from the reanalysis run to 

identify reasons for the observed biases.  

6.1 Bias correction of daily rainfall distribution using quantile correction  

We first examine the distribution of Scott Creek catchment average precipitation for the reanalysis-

climate flows (Figure 11 and Figure 12). The reanalysis-based precipitation is typically lower than 

observed precipitation for high non-exceedance probability events, with the absolute magnitude of 

the difference between simulated and observed being as much as 20% lower for high precipitation 

events. The remainder of the distribution shows better performance, and in almost all cases except 

for very low precipitation events, the observed precipitation is within the range of simulated values. 

The discrepancy for precipitation below 1 mm is due to the definition of ‘dry days’ in the NHMM 

algorithm being days with less than 1 mm precipitation, whereas observed rainfall is measured at a 

resolution of 0.2 mm.  

Simulated evapotranspiration generally shows close correspondence to observed evapotranspiration 

(Figure 13) across all exceedance probabilities, with the range of simulated values being small. 

Therefore, biases in precipitation are more likely to account for possible biases in flow compared to 

possible biases in potential evapotranspiration.  

 

Figure 11: Non-exceedance probability plot of catchment-average precipitation at Scott Creek 

catchment. Both observed data (blue line) and NHMM simulated reanalysis data (grey lines) are 

presented.  
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Figure 12: As for Figure 11 for top 8% of rainfall distribution.  

 

Figure 13: Non-exceedance probability plot of catchment-average potential evapotranspiration at 

Scott Creek catchment. Both observed data (blue line) and NHMM simulated reanalysis data (grey 

lines) are presented. 
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To determine whether possible biases in the precipitation and potential evapotranspiration data 

lead to the biases in the flow as described in Sections 4 and 5, both variables were quantile-

corrected using R package qmap [Gudmundsson et al., 2012]. This algorithm matches the empirical 

cumulative distribution function of the simulated data with that of the observed data using a linear 

interpolation approach.  

The revised marginal distribution of the simulated precipitation and potential evaporation now 

matches the observations, with precipitation results presented in Figure 14 and evapotranspiration 

results presented in Figure 15. The exception is for very low precipitation events, however these are 

unlikely to have a significant impact on annual flow volumes or peak flows.  

The flow duration curve obtained when applying GR4J to the quantile-corrected inputs is shown in 

Figure 16, and can be compared to the flow duration curve without quantile correction (Figure 3). 

Interestingly, the simulated results still underestimate high flows and overestimate low flows, to a 

similar degree as the non-quantile-corrected results. The median of the simulated annual flow rates 

is 124 mm, which is similar to the simulated median without quantile correction, and lower than the 

median observed flow of 142 mm.  

Given that there is still a bias in simulated flows even through the marginal distributions of daily 

precipitation and potential evapotranspiration are accurately reproduced after quantile correction, 

and that seasonality of the precipitation is also correctly reproduced (Figure 17), there must be 

another factor that is causing this biases. This is investigated in the next section.  

 

 

Figure 14: Non-exceedance probability plot of catchment-average precipitation at Scott Creek 

catchment. Both observed data (blue line) and quantile-corrected NHMM simulated reanalysis 

data (grey lines) are presented. 
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Figure 15: Non-exceedance probability plot of catchment-average potential evapotranspiration at 

Scott Creek catchment. Both observed data (blue line) and quantile-corrected NHMM simulated 

reanalysis data (grey lines) are presented. 

 

 

Figure 16: Flow duration curve for Scott Creek, using quantile-corrected reanalysis climate data. 

Solid blue line represents flows obtained by the standard version of GR4J using observed rainfall 
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and APET, while grey lines represent 100 realizations of rainfall and APET obtained from 

reanalysis.  

 

Figure 17: Monthly average precipitation after quantile correction. Grey lines represent 100 

realizations of precipitation, and blue line represents the mean from all realisations.  

6.2 Biases in multi-day precipitation amounts  

In this section we investigate whether poor representation of extreme rainfall intensity across 

multiple consecutive wet days might explain the observed underestimation in high flows. Typically, a 

significant degree of day-to-day persistence exists in precipitation time series [Mehrotra et al., 

2012], with wet days being more likely to be preceded and followed by other wet days and with 

rainfall magnitudes correlated across days. Failure to accurately represent extreme rainfall events 

across multiple days might therefore have a significant impact on the simulation of high flows 

[Pathiraja et al., 2012].  

To investigate whether the persistence is adequately represented in simulated data, the daily 

precipitation time series was aggregated to different durations ranging from two days through to 14 

days. The 95, 99 and 99.8 percentile precipitation depths at each period of aggregation were then 

extracted from both the simulated and observed series. The 99 percentile rainfall are shown in 

Figure 18 (results for the 95 and 99.8 percentile are consistent with this figure). Because of quantile 

correction, the 99 percentile simulated rainfall is identical to the observed rainfall for one day 

period, however differences emerge with increased levels of aggregation. Importantly, all but one of 

the 100 NHMM simulations are below the observed precipitation, implying that the day-to-day 

persistence in rainfall is underestimated.  

This result potentially explains the discrepancy between the observed and simulated flow volumes in 

the Onkaparinga catchment. Table 6 shows that a small number of high flow days make a significant 

contribution to the total flow volume. For example, for Scott Creek, the top 2% of high flow days 
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contribute 32% of the flow volume, while the top 10% of high flow days contribute 67% to the flow 

volume. Hence, any errors in the high flow events will impact the annual water balance. 

Furthermore, the large elasticity of flows in the Onkaparinga (with a 1% change in annual rainfall 

leading to a >3% change in flow) indicates that small biases in rainfall will be strongly amplified when 

examining flow time series.  

Table 6: Contribution of the high flow days to the total flow volume 

Catchment Top 10% high flow days Top 2% high flows days 

Scott Creek 67% 32% 

Echunga Creek 80% 44% 

Houlgraves Weir 70% 35% 

 

 

Figure 18: 99th percentile observed (blue) and quantile-corrected simulated (grey) precipitation at 

Scott Creek at different scales of aggregation.  
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6.3 Evaluation of options to handle the biases in downscaled data.  

The previous analysis showed that quantile correction of the daily rainfall was not able to correct for 

the biases in the multi-day rainfall accumulations. These biases in the multi-day rainfall 

accumulations produce underestimations of high flows and hence underestimations of annual flows. 

Developing approaches to resolve this issue and provide more reliable projections of climate change 

impacts is not a trivial exercise. The following options were evaluated to handle the biases in the 

downscaled data:   

(1) Improving the NHMM rainfall downscaling method  

Improving the ability of the NHMM downscaled approach to better reproduce the multi-day rainfall 

accumulation amounts would be the best approach to resolve this issue. However, the scope of this 

component of the Goyder climate change project was to undertake a hydrological evaluation of the 

downscaling projections, rather than develop improvements to the downscaling approach. In this 

project, a series of trial improvements to NHMM were provided by CSIRO [Charles et al, pers com], 

and were evaluated (results not shown) but none were able to produce significant improvements. It 

is recommended that future research develop approaches to improve the downscaling method to 

better reproduce the observed distribution of multi-day rainfall accumulations. Once this is achieved 

the GCM and downscaling approaches can be evaluated using a split-sample approach [Frost et al., 

2011], where the historical record is split into two periods, one used to calibrate the GCM and 

downscaling approaches and the second used to test the approaches. This will provide an 

assessment of the reliability of the GCM + downscaling approaches.  

(2) Utilising the relative change approach to provide climate change projections 

Given the existence of these biases, a simple pragmatic approach to develop projections is to adopt 

a “relative change” approach. This is where the impact of climate change on streamflow is evaluated 

by comparing the relative change in the streamflow statistics between the historical and future 

climate periods simulated by the GCM+NHMM-based rainfall and potential evapotranspiration and 

the hydrological model. The benefits of this approach are that it is easy to implement and is 

internally consistent because the relative changes are evaluated between the historical and future 

period using the same GCM, NHMM and hydrological model combination. This approach assumes  

the biases that exist the historical period are the same in the future climate period. In this sense, it is 

conceptually similar to undertaking quantile correction of the streamflow. Until the biases in the 

downscaling method are addressed the relative change approach is a pragmatic method to estimate 

the impact of climate change on streamflow. 
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7 Conclusions and Recommendations 

A detailed comparison was undertaken of simulated flows using NHMM predictions from reanalysis 

and climate model simulations against simulated flows based on observed rainfall and PET. The 

comparison was conducted for three sub-catchments of the Onkaparinga, using the hydrological 

model GR4J. The emphasis of the evaluation was on the reanalysis-climate runs, as these results 

provide a more direct reflection of the performance of the NHMM algorithm. Diagnostics considered 

include: 

 Annual flows, including annual averages, the annual coefficient of variations, and low- and high-

flow years; 

 Monthly average flows; and 

 The flow duration curve, calculated over (i) all flow days; (ii) the highest two percent of flow 

days; (iii) individual seasons; and (iv) rising and falling limbs of the hydrograph. 

 

For the GCM-climate model results, a more limited set of summary statistics was used to facilitate 

comparison between the five CMIP3 models and 15 CMIP5 models across the three subcatchments 

in the Onkaparinga catchment.  

Generally, observed flows were within the range of simulated flows, indicating that the climate 

models perform well in capturing a diversity of scenarios representing historical flow. Nevertheless, 

areas of systematic bias were identified, particularly with relation to high flows at Houlgrave Weir 

and Scott Creek. These biases impacted on annual flow volumes, since a very large proportion of the 

overall flow volume comes from a small number of high-flow days. In contrast, low flows were 

generally overestimated. A review of the reanalysis runs as well as the CMIP3 and CMIP5 archive 

runs shows that the performance is similar, and thus is more likely to be associated with the NHMM 

algorithm rather than the forcing GCM. 

An investigation into possible causes of systematic biases revealed that the following factors were 

likely to be important contributors: 

(1) The multi-day consecutive wet spell intensity is underestimated, so that biases remain even 

after quantile-correcting the marginal precipitation and potential evapotranspiration 

distributions. This can lead to an underestimation in extreme flows, which are a major 

contributor to the total annual flows; and 

(2) The runoff coefficient in the Onkaparinga is low (e.g. 0.14 at Houlgrave Weir), and the flows are 

highly ‘elastic’, with small changes in rainfall leading to large changes in flow. The implication is 

that small errors in hydroclimatic forcing variables, and particularly rainfall, are likely to be 

amplified in the predicted flow.  

One of the key recommendations of this report is that future research be conducted to develop 

improved downscaling techniques that can reproduce this multi-day rainfall amounts, and that these 

approaches are evaluated using a split-sample procedure.  

Until these issues are addressed it is recommended that a “relative change” approach be adopted to 
assess the impacts of climate change on streamflow in the Onkaparinga catchment. This is approach 
that will be used in the third volume of this report [Westra et al., 2014].  
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