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i 

Executive Summary 

This report is a contribution to the Goyder Institute for Water Research project ‘An agreed set of 

climate projections for South Australia’ (Beecham, 2015). This project sought to deliver well-

evaluated climate projections and downscaled data products that could be used by South Australian 

government, industry and the community alike, to be appropriately prepared and informed for 

future climate change i.e. be ‘Climate Ready’. This report presents two components of work that 

contribute to the overall goal of demonstrating the application and utility of downscaled climate 

change projections and reservoir hydrodynamic-water quality models to assess future climate 

change impacts. 

The report general introduction provides the context for the importance and risks of future climate 

change impacts upon surface water quality and why these risks need to be understood and 

quantified to effectively plan appropriate adaptive responses. 

The project consisted of a two stage assessment: 

1. The evaluation of the suitability of a coupled reservoir hydrodynamic water quality model to 

predict changes in water quality from altered meteorological boundary conditions (Chapter 

1). (Also published as van der Linden et al., 2015)  

2. The second stage applied downscaling products from Task 3 that developed as part of the 

larger Goyder Water Research Institute project to determine the impacts on water quality in 

Mount Bold Reservoir, South Australia using a one-dimensional coupled water quality 

model. (Chapter 2) 

Chapter 1 describes the application of a three-dimensional model (ELCOM-CAEDYM) at Happy Valley 

Reservoir, South Australia to a range of incremental manipulations of the meteorological boundary 

conditions. The model was used to determine responses to changes in air temperature, wind and 

inflow volume, which were evaluated independently (i.e. not factorial combinations). Climate 

change projections were used to identify and select appropriate changes in these variables. In 

addition the model was also used to test these variables outside these plausible ranges, so as to fully 

evaluate model behaviour within potential (but implausible) climate change. The growth of major 

phytoplankton groups was one of the important modelled outputs. The modelled response of these 

phytoplankton groups was within competitive growth response behaviour that was expected from 

an empirical climate sensitivity analysis that was based upon historical data. These modelling 

scenarios support the currently prevailing scientific theory that cyanobacteria, which produce 

nuisance tastes, odours and toxins and which compromise raw water quality, will become more 

successful in a warmer climate. This is consistent with a number of other modelling studies. 

Chapter 2 describes the application of the downscaling products from Task 3 in the larger Goyder 

Water Research Institute project. These projections were used to determine future potential impacts 

upon water quality in Mount Bold Reservoir, South Australia using the one-dimensional coupled 

water quality model, GLM-FABM. This required the development of additional ‘bolt-on’ downscaling 

approaches to produce projected outputs for wind-speed and cloud cover. The wind speed 

downscaling approach employed parametric distributions (gamma or Weibull) fitted to observed 

wind-speed at local stations conditional upon the weather state used in the Task 3 downscaling 

product and the month of the year. These conditional distributions were then sampled according to 

the sequence of stochastically generated weather state and month combinations in the Task 3 



 

downscaling. The cloud cover downscaling approach relied upon published methods to estimate 

cloudiness from the difference in ideal and observed solar radiation.  

As this work was performed in parallel to the stream-flow analysis conducted by Westra et al. 

(2014), the catchment yield data they produced was unable to be incorporated in this study. 

Consequently, the reservoir water budget was constructed using a series of assumptions and 

repeating the historical water budget with minor volume adjustments. The parameter set used for 

biogeochemical and water quality related processes was derived from a well-validated but as yet 

unpublished application of GLM-FABM to Mount Bold Reservoir developed by Rigosi et al. as part of 

a study supported by the Water Research Foundation (Project 4382; Rigosi et al., 2015). Reservoir 

simulations were run for a single realisation of the augmented Task 3 downscaled data for each of 15 

Global Circulation Models (GCMs) in 30-year periods (1961-1990; 2011-2040; 2041-2070; 2071-

2100); one historical emissions and two projected emission scenarios from the SRES emissions 

scenarios (representative), as used in the Coupled Model Inter-comparison Project 5 (CMIP5; Taylor 

et al., 2012). 

The resulting meteorological boundary conditions followed seasonally expected patterns and 

displayed trends derived from the Task 3 downscaling products. Wind-speed, which was an output 

product of this project, and not directly derived from the Task 3 outputs, showed no trends across 

time or emissions scenarios. This was as expected, as the transition probabilities between the 

weather states did not change between the different periods, or emissions scenarios. Superficially 

this may be considered one weakness of the approach as the data does not reproduce the projected 

decrease, or stilling, of wind speed at mid-latitudes. The magnitude of this reduction is expected to 

be small (McVicar et al., 2008) and is probably most relevant in the late century when uncertainties 

associated with emissions are larger and dominant. Small increases in solar radiation, derived from 

the Task 3 downscaling products were propagated to result in decreases in cloud cover. Differences 

in the distributions of cloud cover were produced, mostly in the months of April, September, 

October and November. 

Following simulation with GLM and calculation of ensemble statistics, the projected simulated water 

quality data demonstrate deteriorating trends in water quality that should be regarded as of concern 

for reservoir management. However, while the trends can be considered as leading to incrementally 

worse water quality than the historical period, it must be noted that 1), these assessments are of the 

direct effects upon water quality; changes in hydrological budget or external nutrient loading were 

not considered, and 2), the probability characteristics of the multi-day rainfall extremes are known 

to be under-represented in the NHMM outputs, and it is therefore reasonable to expect that this 

may also be the case for solar radiation (i.e. heat waves). The projections can therefore be 

considered to be conservative and represent a best case view of the direct effects of climate change 

on reservoir quality, i.e. in a situation where average wind speed does not decrease and the 

probability of heat waves does not change. 

The results were broadly consistent with the prevailing understanding of the sensitivity of water 

quality to warming. Changes in abiotic water quality parameters seem to be predominantly driven by 

evaporation and the small changes in the reservoir water fluxes made to maintain the validity of the 

water budget. The worst case increases in surface water temperature resulted in increased growth 

of cyanobacteria. 

 



 

iii 

Table of Contents 

EXECUTIVE SUMMARY ............................................................................................................................................ I 

TABLE OF CONTENTS ............................................................................................................................................. III 

LIST OF FIGURES ..................................................................................................................................................... V 

GENERAL INTRODUCTION ...................................................................................................................................... 1 

CHAPTER 1. SUITABILITY OF A COUPLED HYDRODYNAMIC WATER QUALITY MODEL TO PREDICT CHANGES IN 

WATER QUALITY FROM ALTERED METEOROLOGICAL BOUNDARY CONDITIONS .................................................... 2 

Abstract: .............................................................................................................................................. 2 

Introduction ........................................................................................................................................ 2 

Materials and Methods ....................................................................................................................... 4 

Happy Valley Reservoir .................................................................................................................................. 4 

Model Description .......................................................................................................................................... 5 

Scenarios for Analysis of Climatic Sensitivity ................................................................................................. 6 

An Empirical Analysis of the Climatic Sensitivity of Chlorophyll-a to Temperature ....................................... 8 

Results and Discussion ........................................................................................................................ 8 

Reservoir Physical Characteristics .................................................................................................................. 8 

Water Quality................................................................................................................................................. 9 

Implied Model Climatic Sensitivity ............................................................................................................... 11 

Empirical Reservoir Climatic Sensitivity........................................................................................................ 12 

CHAPTER 2. DIRECT IMPACTS OF CLIMATE CHANGE ON WATER QUALITY IN MOUNT BOLD RESERVOIR USING 

DOWNSCALED METEOROLOGY. ........................................................................................................................... 14 

Introduction ...................................................................................................................................... 14 

Methods ............................................................................................................................................ 14 

Sources of data ............................................................................................................................................ 14 

Wind speed .................................................................................................................................................. 14 

Solar radiation, cloud cover and longwave radiation .................................................................................. 27 

Reservoir water budget ................................................................................................................................ 32 

Statistical analysis of results ........................................................................................................................ 35 

Results ............................................................................................................................................... 35 

Summary of Meteorological and Hydrological Inputs ................................................................................. 35 

Water temperature, stratification and surface energy balance .................................................................. 42 



 

Abiotic water quality parameters ................................................................................................................ 51 

Phytoplankton variables .............................................................................................................................. 59 

Statistical analyses of simulated outputs ..................................................................................................... 65 

Discussion.......................................................................................................................................... 69 

References ........................................................................................................................................ 71 

APPENDIX 1 – R CODE FOR FUNCTIONS ............................................................................................................... 76 

clearSkyShortWave ...................................................................................................................................... 76 

clearSkyShortWave.v ................................................................................................................................... 76 

AveSolarRadiation ........................................................................................................................................ 76 

AveSolarRadiation.v ..................................................................................................................................... 76 

cloudCoverFromSRdev ................................................................................................................................. 79 

cloudCoverFromSR.MtBoldGLM ................................................................................................................... 79 

 



 

v 

List of Figures 
Figure 1. Location of Happy Valley Reservoir. Inset shows 10 m contours of depth and inflow from the aqueduct and the location of the 

offtake to the water treatment plant (WTP). ......................................................................................................................................... 5 

Figure 2. Change in mean modeled water quality values over the summer period in the different sensitivity analysis scenarios where 

temperature (a), rate of inflow and outflow (b) or wind speed (c) were incrementally changed. ........................................................ 10 

Figure 3. Comparison of (a) model derived climate sensitivity to (b) empirical reservoir climate sensitivity of chlorophyll-a to temperature 

in summer (Dec, Jan, Feb). In panel (b) each point represents the unity normalized anomaly from the monthly median value 

calculated over the period 1998-2013 and is labelled as yyyy-mm. ..................................................................................................... 13 

Figure 4. Floating weather station at Mt Bold Reservoir. Featuring ultrasonic wind speed and direction, global and long wave radiation 

sensors, air temperature and humidity and water temperature at multiple depths. ........................................................................... 16 

Figure 5. Time series of daily average wind speed measured at Mount Bold, Kent Town and Kuitpo.  The data downloaded from the NOAA 

ISD-Lite database was found to contain erroneous data (marked by the red bar in the bottom panel) which was excluded from 

subsequent analyses. ........................................................................................................................................................................... 17 

Figure 6. Autocorrelation function (ACF) of time series of wind speed over 2003-2006. ................................................................................ 18 

Figure 7. Histograms of daily wind speed observed at Mount Bold, Kent Town and Kuitpo. .......................................................................... 19 

Figure 8.  Daily average wind speed at Mount Bold Predicted by observed daily average wind speed at other observation stations. These 

regression fits are subsequently described as ‘lumped’ fits. The black line is the 1:1 line while the red line is the fitted line. ............ 20 

Figure 9. Daily average windspeed at Mount Bold predicted by daily observed wind speed at Kent Town (#); the regression was applied 

conditionally by month and the fits used to generate subsequent ‘monthly’ fits. The black line is the 1:1 line while the red line is the 

fitted line. ............................................................................................................................................................................................. 21 

Figure 10. Lumped vs monthly model fit comparison for Kent Town. Top panel: Observed vs predicted wind-speed at Mount Bold Reservoir 

... Bottom panels: histograms of residuals............................................................................................................................................ 22 

Figure 11. . Daily average wind-speed at Mount Bold predicted by daily observed wind-speed at Kuitpo (#); the regression was applied 

conditionally by month and the fits used to generate subsequent ‘monthly’ fits. The black line is the 1:1 line while the red line is the 

fitted line. ............................................................................................................................................................................................. 23 

Figure 12. Lumped vs monthly model fit comparison for Kent Town. Top panel: Observed vs predicted windspeed at Mount Bold Reservoir 

... Bottom panels: histograms of residuals............................................................................................................................................ 24 

Figure 13. Kent town ecdf of prediction and KS test statistics. The p-value indicates that the null hypothesis that the samples come from 

the same distribution is rejected and we must conclude that the distributions are different. ............................................................. 25 

Figure 14. Kuitpo ECDF of predictions and KS statistics. The p-value indicates that the null hypothesis that the samples come from the same 

distribution is not able to be rejected and therefore we cannot conclude that the distributions are different. .................................. 25 

Figure 15. ECDFs of windspeed conditional on weather state in each month as derived by comparison of the 'Set 9' NHMM states (for 

Kuitpo) and wind-speed predicted for Mt Bold Reservoir from models developed between Kuitpo and Kent Town observations. 

Different lines represent different monthly weather states which are arbitrary as compared to other months. ................................ 26 

Figure 16. Example of wind speed distribution fits conditional on month and NHMM weather state. Gamma and Weibull parametric 

distributions were fitted and the best selected according to maximum log likelihood. ....................................................................... 27 

Figure 17. Results of fitting clear sky radiation model. Red line is the 1:1 line. ............................................................................................... 28 

Figure 18. Examples of daily trajectory of observed and modelled radiation at Happy Valley Reservoir. ....................................................... 29 

Figure 19. Form of the Bristow and Campbell (1984) linear atmospheric transmissivity and cloudiness function. ......................................... 32 

Figure 20. Schematic of scenario construction, simulation and summary....................................................................................................... 34 

Figure 21. Shortwave radiation in the downscaled meteorological boundary conditions. .............................................................................. 36 

Figure 22. Longwave radiation in the downscaled meteorological boundary conditions. ............................................................................... 37 

Figure 23. Cloud cover in the downscaled meteorological boundary conditions. ........................................................................................... 38 

file:///C:/Users/va002675/Desktop/Goyder/GoyderWRI%20C11%20Task4%20SA%20Water%20draft%20v13.docx%23_Toc447099407


 

Figure 24. Air temperature in the downscaled meteorological boundary conditions. .................................................................................... 39 

Figure 25. Relative humidity in the downscaled meteorological boundary conditions. .................................................................................. 40 

Figure 26. Wind speed in the downscaled meteorological boundary conditions. ........................................................................................... 41 

Figure 27. Surface water temperature in reservoir simulations with boundary conditions derived from downscaled climate data (SA Climate 

Ready). ................................................................................................................................................................................................. 43 

Figure 28. Minimum water temperature in reservoir simulations with boundary conditions derived from downscaled climate data (SA 

Climate Ready). .................................................................................................................................................................................... 44 

Figure 29. Lake Number in reservoir simulations with boundary conditions derived from downscaled climate data (SA Climate Ready). .... 45 

Figure 30. Daily shortwave heat flux in reservoir simulations with boundary conditions derived from downscaled climate data (SA Climate 

Ready). ................................................................................................................................................................................................. 46 

Figure 31. Daily latent heat flux in reservoir simulations with boundary conditions derived from downscaled climate data (SA Climate 

Ready). ................................................................................................................................................................................................. 47 

Figure 32. Daily sensible heat flux in reservoir simulations with boundary conditions derived from downscaled climate data (SA Climate 

Ready). ................................................................................................................................................................................................. 48 

Figure 33. Daily net longwave heat flux in reservoir simulations with boundary conditions derived from downscaled climate data (SA 

Climate Ready) ..................................................................................................................................................................................... 49 

Figure 34. Daily volumetric evaporation in reservoir simulations with boundary conditions derived from downscaled climate data (SA 

Climate Ready) ..................................................................................................................................................................................... 50 

Figure 35. Salt concentration in reservoir simulations with boundary conditions derived from downscaled climate data (SA Climate Ready)

 ............................................................................................................................................................................................................. 52 

Figure 36. Dissolved oxygen concentration in reservoir simulations with boundary conditions derived from downscaled climate data (SA 

Climate Ready) ..................................................................................................................................................................................... 53 

Figure 37. Dissolved inorganic carbon concentration in reservoir simulations with boundary conditions derived from downscaled climate 

data (SA Climate Ready) ....................................................................................................................................................................... 54 

Figure 38. Filterable reactive phosphorus concentration in reservoir simulations with boundary conditions derived from downscaled 

climate data (SA Climate Ready) ........................................................................................................................................................... 55 

Figure 39. Nitrate concentration in reservoir simulations with boundary conditions derived from downscaled climate data (SA Climate 

Ready) .................................................................................................................................................................................................. 56 

Figure 40. Ammonium concentration in reservoir simulations with boundary conditions derived from downscaled climate data (SA Climate 

Ready) .................................................................................................................................................................................................. 57 

Figure 41. Particulate organic carbon concentration in reservoir simulations with boundary conditions derived from downscaled climate 

data (SA Climate Ready) ....................................................................................................................................................................... 58 

Figure 42. Concentration of carbon within phytoplankton functional group representing Chlorophytes (green algae) in reservoir 

simulations with boundary conditions derived from downscaled climate data (SA Climate Ready) .................................................... 60 

Figure 43. Concentration of carbon within phytoplankton functional group representing Bacillariophytes (diatoms) in reservoir simulations 

with boundary conditions derived from downscaled climate data (SA Climate Ready) ....................................................................... 61 

Figure 44. Concentration of carbon within phytoplankton functional group representing cyanobacteria (Microcystis-like cyanobacteria) in 

reservoir simulations with boundary conditions derived from downscaled climate data (SA Climate Ready) ..................................... 62 

Figure 45. Concentration of carbon within phytoplankton functional group representing Cryptophytes (crypto; yellow-brown algae) in 

reservoir simulations with boundary conditions derived from downscaled climate data (SA Climate Ready) ..................................... 63 

Figure 46. Concentration of carbon within phytoplankton functional group representing Dinoflagellates (perid; Peridinium-like 

dinoflagellates) in reservoir simulations with boundary conditions derived from downscaled climate data (SA Climate Ready) ........ 64 

Figure 47. Correlation plot for weekly GLM-FABM outputs from historical projection period ........................................................................ 66 



 

vii 

Figure 48. Scree plot of variance attributable to the principal components in the historical period............................................................... 66 

Figure 49. Vector plot of PCA analysis of historical period .............................................................................................................................. 67 

Figure 50. Vector plot of PCA analysis of 2017-2100 RCP 8.5 projections ....................................................................................................... 67 



 

List of Tables 

Table 1. Phytoplankton group parameters that differentiate the response to ecophysiological drivers in the ELCOM-CAEDYM model set up.

 ............................................................................................................................................................................................................... 6 

Table 2. Boundary condition modifications applied in the sensitivity analysis. A scenario was generated for each change in meteorological 

variable, resulting in twenty four (24) scenarios differing from the base scenario................................................................................. 7 

Table 3. Summary of average physical properties for climatic sensitivity analysis of ELCOM-CAEDYM simulations of Happy Valley Reservoir.

 ............................................................................................................................................................................................................... 8 

Table 4. Mean cyanobacterial growth characteristics in ELCOM-CAEDYM simulations. The ‘Limitation by’ values indicate the degree of 

growth limitation by light, phosphorus and nitrogen. It takes a value from 0 to 1; where 1 is unlimited and 0 is completely limited 

(no growth) ........................................................................................................................................................................................... 11 

Table 5. Parameters estimated for cloud cover prediction function from quantile fitting and performance metrics when compared to cloud 

observations at Mount Barker (closest station with overlapping observations)................................................................................... 31 

Table 6. Ranges of water quality in reservoir inflow boundary conditions. ..................................................................................................... 33 

Table 7. Results of the multiple linear regression analysis with relative importance assessment of model factors and interactions. ............ 68 
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General Introduction 

Climate change has been identified as a key challenge for the water industry due to impacts on 

water availability, energy prices and infrastructure longevity (Brueck et al., 2012; Woodbury et al., 

2012). As the product of meteorological effects on physical, chemical and biological processes in 

landscapes and reservoirs, surface water quality has the potential to be influenced by climate 

change in many ways (Delpla et al., 2009; Whitehead et al., 2009). The sensitivity of reservoir water 

quality to the direct effects of climate depend on many factors including trophic state (Rigosi et al., 

2014), geographical position, catchment characteristics, morphology and a suite of biotic-abiotic 

interactions (Blenckner, 2005). A range of modelling activities have proven useful for evaluating 

climate related impacts on lakes and reservoirs (Jones et al., 2011; Elliott, 2012; Trolle et al., 2014), 

in combination with empirical studies. A recent review conducted by the authors identified the 

following risks associated with climate change, in a range of climatic regions: 1) increases in the 

frequency and severity of cyanobacterial blooms; 2) more frequent episodes of high turbidity; 3) 

increased frequency or severity of pathogen challenges, 4) elevated concentrations of dissolved 

organic matter, and 5) increased severity and duration of hypolimnetic deoxygenation. These 

anticipated risks have contributing factors that operate on a range of temporal scales and can be 

related to both changes in variability and climatic norms. The contributing factors include, increased 

rainfall intensity (risks 1, 2 and 3), increased variability in run-off (risks 2, 3 and 4), elevated average 

temperature (risks 1, 4 and 5) and increased frequency and duration of heatwaves (risks 1 and 5). As 

such these risks need to be understood and quantified in order to effectively plan adaptive 

responses. 

In order to inform the process of evaluating climate related risks, an advanced understanding of 

climate processes and good quality downscaled climate projections are required. The Goyder Water 

Research Institute project ‘An agreed set of climate projections for South Australia’ has contributed  

a significant effort towards understanding climate drivers in South Australia (Cai et al., 2012; 

Beecham et al., 2014; Cai, Borlace, et al., 2014; Cai, Santoso, et al., 2014) and the production of 

downscaled climate projections for all the natural resource management regions of South Australia. 

One such downscaled product from Task 3 of the project applies a non-homogenous hidden Markov 

model (NHMM) to stochastically downscale rainfall (Fu et al., 2013), and other variables. Briefly, this 

is achieved by training the NHMM to determine the probability of transition between a series of 

weather states derived from observed synoptic scale weather patterns. Changes in the transition 

probabilities can also be derived from the outputs of global circulation models (GCMs) and 

subsequently used to generate stochastic realisations of statistically consistent (in terms of temporal 

auto correlation and cross correlation between variables) time series of potential weather data. For 

more detailed explanation of the methods refer to the Task 3 report for the project. The overall goal 

of Task 4 of the Goyder WRI C.1.1 project is to evaluate the suitability of the Task 3 outputs for 

modelling climate change impacts by developing a suite of modelling applications, including models 

of catchment hydrology, crop growth, groundwater, and drinking water reservoirs.  

This report presents the output from the drinking water reservoirs component of Task 4 and is 

composed of two sections. First, the climate sensitivity of a three dimensional water quality model 

(Hipsey et al., 2006; Hodges and Dallimore, 2007) is evaluated using a one-at-a-time incremental 

approach. Second, the downscaling products generated in Task 3 were used to construct a series of 

simulations of Mount Bold Reservoir using GLM-FABM, a coupled 1D hydrodynamic – water quality 

model (Hipsey et al., 2013).  



 

 

Chapter 1. Suitability of a coupled hydrodynamic water quality model 

to predict changes in water quality from altered meteorological 

boundary conditions 

Abstract:  

Downscaled climate scenarios can be used to inform management decisions on investment in 

infrastructure or alternative water sources within water supply systems. Appropriate models of the 

system components, such as catchments, rivers, lakes and reservoirs, are required. The climatic 

sensitivity of the coupled hydrodynamic water quality model ELCOM-CAEDYM was investigated by 

incrementally altering boundary conditions, to determine its suitability for evaluating climate change 

impacts. A series of simulations were run with altered boundary condition inputs for the reservoir. 

Air and inflowing water temperature (TEMP), wind speed (WIND) and reservoir inflow and outflow 

(FLOW) were altered to investigate the sensitivity of these key drivers over relevant domains. The 

simulated water quality variables responded in broadly plausible ways to the altered boundary 

conditions; sensitivity of the simulated cyanobacteria population to increases in temperature was 

similar to published values. However the negative response of total chlorophyll-a suggested by the 

model was not supported by an empirical analysis of climatic sensitivity. This study demonstrated 

that ELCOM-CAEDYM is sensitive to climate drivers and may be suitable for use in climate impact 

studies. It is recommended that the influence of structural and parameter derived uncertainty on 

the results be evaluated. Important factors in determining phytoplankton growth were identified 

and the importance of inflowing water quality was emphasised. 

Introduction 

The Goyder Water Research Institute project C.1.1 was initiated to address a knowledge gap in the 

current understanding of the potential impacts of climate change on South Australia. The purpose of 

the project was to gain understanding of climate drivers, downscale global circulation (GCM) model 

projections of future climate and develop a suite of model applications suitable for use in 

assessment and adaptation frameworks. Current global circulation model (GCM) projections suggest 

that Australian average temperatures will increase by 1.0 to 5.0 degrees by 2070 (compared to 1980-

1999), rainfall will decrease over southern Australia and the number of hot days and warm nights 

will increase (CSIRO, 2012). Decreases in autumn and winter wind speed and increases in winter and 

spring downward solar radiation are also projected, but these projections are subject to large 

uncertainties (CSIRO, 2007). Recent efforts to downscale GCM outputs to the catchment scale have 

identified the potential for reduced catchment yields as the result of reduced precipitation, changes 

in rainfall seasonality and increased temperatures (Charles et al., 2008; Heneker and Cresswell, 

2010; Green et al., 2011). Besides issues of water quantity, there are potential impacts of climate 

change on water quality (Delpla et al., 2009; Whitehead et al., 2009). Reservoirs play a major role in 

determining the water quality within a given water supply system, as they act as both barriers to 

(e.g. pathogens) and producers of (e.g. cyanobacteria [toxins, tastes and odours], iron and 

manganese) water quality hazards (Brookes et al., 2008). Reservoirs integrate the prevailing 

hydrology, meteorology, biology and biogeochemistry and the resulting quantity and quality of 

water is a valuable resource that requires sound management to ensure the utility and sustainability 

of the source water; water quality models are a tool to facilitate this end. 



 

3 

The potential impacts of climate change on water quality have been evaluated using integrated 

modelling schemes which include water quality models (Mimikou et al., 2000; Arheimer et al., 2005; 

Thorne and Fenner, 2008; Saloranta et al., 2009; Elliott, 2012). Such schemes use a combination of 

catchment and lake/reservoir models that use meteorological boundary conditions as inputs. The 

meteorological conditions are altered to represent projected future climate and the resulting 

simulations are taken to represent the potential impacts of those changed climatic conditions. Too 

few of these studies have been conducted to make generalisations about the potential impacts; both 

positive and negative influences have been identified. Additionally, the differences in model 

structure and method make it difficult to compare the different studies directly. There are many 

sources of uncertainty within such a modelling scheme, including the choice of GCM, emissions 

scenario, downscaling methodology, and the selection of and rigour of application of the 

hydrological, constituent and lake/reservoir water quality models, including model structure 

selection and identification of parameters. Each step in the modelling scheme needs to be 

thoroughly evaluated to ensure the results can be useful. 

It is therefore appropriate to adequately test the response of the proposed reservoir water quality 

model to changes in the environmental variables expected to change in the future. Formalising our 

understanding of the way that water quality variables respond to climate related model inputs is 

fundamentally important to understanding the outputs we generate from models (Elliott, 2012). As 

these models will be used to project the impacts of downscaled climate scenarios, it is important 

that the response of the water quality models to the boundary conditions is understood. Water 

quality models vary in their data input requirements and often contain options for the sub-model 

structures they contain, making it difficult to assume that they will be equally sensitive in any given 

application. Responses of chemical and biological processes to the changes in physical state 

generated by changes in meteorological inputs are dynamic and interactive and therefore difficult to 

resolve without resolving individual sensitivities in an explicit analysis. 

The outputs from any model are dependent on the inputs. It follows that uncertainty in the inputs, 

either the boundary conditions or the model parameters, contributes to the uncertainty of the 

model results. Quantification of the influence of the inputs on the model outputs is known as 

sensitivity analysis and has been extensively described in the literature. Complex models with many 

parameters, boundary conditions and long runtimes have particular challenges associated with the 

analysis of their sensitivity and uncertainty. Consequently a great deal of effort has gone towards 

developing screening methods to identify sensitive parameters and evaluate their influence on 

model output (Saltelli, 2002; Campolongo et al., 2007; Arhonditsis et al., 2008; Makler-Pick et al., 

2011). Less often the influence of boundary conditions or input data is evaluated. Generally the error 

associated with these inputs is considered to be less than the uncertainty associated with model 

parameters as they are quantities that are generally measured at, or proximal to, the lake or 

reservoir being modelled, using accurate instrumentation. However the range of meteorological 

boundary conditions are expected to change in the future (Schlabing et al., 2014) and given the non-

linear and non-monotonic nature of ecosystem models, their behaviour in these conditions is 

uncertain. As suitable observed validation data cannot exist for unobserved future conditions, model 

behaviour under altered boundary conditions can only be validated against qualitative projected 

responses of ecosystems. These qualitative responses may be derived from space-for-time 

approaches, robust ecophysiological conceptual models and response data (Paerl and Paul, 2012) 

and ensemble model predictions (Trolle et al., 2011). 



 

Therefore, the goal of this work is to answer the question: Does ELCOM-CAEDYM demonstrate 

appropriate climatic sensitivity to be used as part of a robust integrated modelling scheme? The 

responsiveness of the ELCOM-CAEDYM model (Hipsey et al., 2006; Hodges and Dallimore, 2007) to 

changes in meteorological boundary conditions was analysed. A previous application of the model to 

Happy Valley Reservoir (HVR) was used in conjunction with scenarios with altered environmental 

forcing of incremental changes in flow, air and water temperature, and wind speed. Responses in 

water quality variables of primary focus were cyanobacteria and soluble metals; further 

consideration was given to water temperature and water column stratification due to their 

important role in determining mixing and the rates of biogeochemical reactions. This work does not 

constitute a model sensitivity analysis, sensu stricto, but evaluates the climatic sensitivity or 

responsiveness of ELCOM-CAEDYM and compares it to other studies and an empirical climate 

sensitivity analysis of chlorophyll-a in Happy Valley Reservoir. 

Materials and Methods 

Happy Valley Reservoir 

Happy Valley Reservoir (HVR; 35.07 S, 138.57 E) was created by the construction of an earth wall 

dam between 1892 and 1897. Following a rehabilitation project from 2002 to 2004, it has a capacity 

of 11,600 ML, a surface area of 178 hectares and average and maximum depths of 6.5 and 18 m, 

respectively. It is an off stream reservoir and supplies raw water to South Australia’s largest water 

treatment plant, which produces up to 400 ML of filtered water per day, resulting in a hydraulic 

retention time of 15-30 days. As HVR is isolated from its natural catchment, it is supplied with water 

from the Onkaparinga River system via an aqueduct from Clarendon Weir, which is in turn supplied 

from the much larger Mount Bold Reservoir (35.12 S, 138.70 E). Mount Bold Reservoir collects water 

from the Mount Lofty Ranges and is supplemented with water pumped from the River Murray, as 

are most of South Australia’s reservoirs. Happy Valley Reservoir has experienced a range of water 

quality challenges in the past, with blue-green algae (cyanobacteria) causing taste and odour 

problems in recent decades. The use of artificial destratification (mixing) and algaecides are used for 

management in the reservoir, while granular activated carbon is used in the water treatment 

process to reduce taste and odour compound concentrations to acceptable levels in the product 

water. As HVR is supplied with water from an unprotected catchment (i.e. containing various 

farming activities and human habitation), vigilance against pathogens is required and loads of 

nutrients are greater than is generally desirable. During the study period, nutrient concentrations 

were, total phosphorus, 0.05-0.1 mgL-1; total Kjeldahl nitrogen, 0.5-1.0 mgL-1; filterable reactive 

phosphorus, 0.005-0.03 mgL-1; ammonia, 0.005-0.05 mgL-1 and oxidized nitrogen, 0.05-0.5 mgL-1. The 

seasonal temperature range is generally between 8-10 °C and 25-27 °C; strong persistent 

stratification is prevented from occurring by the operation of a bubble plume aerator. Due to the 

importance of Happy Valley Reservoir to Adelaide’s water supply, the South Australian Water 

Corporation has invested heavily in monitoring and research into the processes influencing water 

quality. 
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Figure 1. Location of Happy Valley Reservoir. Inset shows 10 m contours 
of depth and inflow from the aqueduct and the location of the offtake to 

the water treatment plant (WTP). 

Model Description 

The Estuary and Lake Computer Model (ELCOM) is a hydrodynamic model that simulates the 

temporal behaviour of stratified water bodies using environmental inputs such as inflows, outflows 

and meteorological conditions. The model solves the unsteady, viscous Navier-Stokes equations for 

incompressible flow using the hydrostatic assumption for pressure. The simulated processes include 

baroclinic and barotropic responses, rotational effects, tidal forcing, wind stresses, surface thermal 

forcing, inflows, outflows, and transport of salt, heat and passive scalars (Hodges and Dallimore, 

2007). When coupled with the Computational Aquatic Ecosystem DYnamics Model (CAEDYM, Hipsey 

et al., 2006) water quality model, ELCOM can be used to simulate three-dimensional transport and 

interactions of flow physics, biology and chemistry. ELCOM uses the Euler-Lagrange method for 

advection of momentum with a conjugate-gradient solution for the free-surface height. Passive and 

active scalars (i.e., tracers, salinity and temperature) are advected using a conservative ULTIMATE 

QUICKEST discretization (See Hodges and Dallimore, 2007 and references within for further details). 

ELCOM v2.2.2-04 and CAEDYM v3.3.0-01 were used in this study. 

The Centre for Water Research was previously engaged to apply ELCOM-CAEDYM to Happy Valley 

Reservoir (Romero et al., 2005). Upon delivery, the model was considered appropriate for the 

simulation of water movement, contaminant transport, algal growth and biogeochemical cycling 

(Romero et al., 2005). ELCOM was applied at three resolutions (25, 50 and 100 m grid sizes); the 

finest grid to be used for examining short-circuiting and inflow dilution, and the coarser grids for 

quicker runtimes and running scenarios relating to stratification, algal growth and soluble metal 

release from sediments (the 100 m grid was used in this study). The hydrodynamic model was 

validated against temperature sensor data over two periods, 29 June–6 October 2005 and 23 

October 2005–8 February 2006. The parameter set for CAEDYM was derived from applications to 

other Australian reservoirs and some minor calibration of parameters to suit Happy Valley Reservoir. 

The manual calibration focused on parameters that could not be derived from literature values and 

included, the density of particulate organic matter, the maximum rates for microbial decomposition of 



 

particulate organic phosphorus and nitrogen, the maximum rate of mineralization of dissolved organic 

phosphorus and nitrogen, the dissolved oxygen ½ saturation constant for nitrification, the rate of 

denitrification and the phosphorus ½ saturation constant for algal uptake. Some deficiencies in the 

calibration of the algal growth components of the model remained.  

Two algal groups were included in the model structure, representing chlorophytes (green algae) and 

cyanophytes (blue-green algae). The phytoplankton growth model was parameterized according to 

literature values, with only a single parameter being manually calibrated for Happy Valley Reservoir 

(Table 1). Parameters relating to light, temperature, phosphorus uptake and respiratory losses were 

different between the two phytoplankton groups. All other parameters were shared and derived from 

literature values. Notably, buoyancy regulation by cyanobacteria was not invoked in the model 

structure. 

For this work, the model was not further calibrated or modified beyond the work of Romero et al. 

(2005) and therefore no performance metrics are presented. The lack of extensive calibration to HVR 

water quality dynamics means the results of the study can be considered to be a general test of the 

response sensitivity of ELCOM-CAEDYM to climate drivers and not an investigation of the likely 

effects of climate change on water quality in Happy Valley Reservoir. 

Table 1. Phytoplankton group parameters that differentiate the response 
to ecophysiological drivers in the ELCOM-CAEDYM model set up. 

Parameter Cyanophyte 

value 

Chlorophyte 

value 

Description  

(units) 

Reference 

µGTH 0.8 1.2 Maximum growth rate  

(d
-1

) 

(USCE, 1995) 

ϑAg 1.09 1.07 Temperature multiplier for 

growth  

(-) 

(Coles and Jones, 2000; 

Krüger and Eloff, 2010) 

µRES 0.09 0.10 Respiration, mortality and 

excretion  

(d
-1

) 

(Schladow and Hamilton, 

1997) 

KP 0.009 0.008 P ½ saturation constant  

(mg L
-1

) 

Calibrated 

IK 130 100 Light ½ saturation constant  

(µE m
-2

 s
-1

) 

(Hamilton and Schladow, 

1997) 

TSTD 24 20 Standard temperature for algal 

growth  

(°C) 

(Griffin et al., 2001) 

TOPT 30 22 Optimum temperature for algal 

growth  

(°C) 

(Robarts and Zohary, 1987; 

Griffin et al., 2001) 

TMAX 39 35 Maximum temperature for algal 

growth  

(°C) 

(Griffin et al., 2001) 

Scenarios for Analysis of Climatic Sensitivity 

A series of twenty four (24) scenarios were defined, synthetic input data files were generated and 

ELCOM-CAEDYM simulations were run. As stratification, algal growth and soluble metal 
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concentrations were of key interest, the summer period simulation was used. The 100 m grid version 

of ELCOM was used to minimise the runtime required, as short-circuiting was not a primary concern 

of the water quality problems being investigated. The input boundary conditions analysed were 

selected to represent the 'climate drivers' of precipitation, air temperature and wind speed and are 

represented by the input files as changes in flow, air and water temperature, and wind speed, 

respectively (these are referred to as INFLOW, WIND and TEMP in the text). The synthetic input files 

were generated by applying a linear multiplier, for INFLOW and WIND, and an increment in the case 

of TEMP (Table 2). Temperature was modified in this fashion to facilitate comparison to potential 

temperature change magnitudes. For comparison, -5 and +5 degrees correspond to multipliers of 0.8 

and 1.25, respectively, at 20 degrees Celsius, similar to the average temperature in the reservoir 

during the simulations. As ELCOM-CAEDYM will fail if changes to the water budget result in 

violations in the boundary conditions, changes in the inflow and outflow must be balanced, 

therefore the outflow (consumption at the offtake) was increased by a corresponding amount. The 

FLOW scenarios could therefore be considered to represent a change in the consumption of water 

by the water treatment plant (WTP), rather than changes in precipitation, strictly. This may initially 

seem artificial; however, as HVR is an offline storage and the inflow to the reservoir is fully regulated 

by a flume at Clarendon Weir, it can be interpreted as representing changes in demand, especially as 

a summer period was considered. 

Table 2. Boundary condition modifications applied in the sensitivity 
analysis. A scenario was generated for each change in meteorological 
variable, resulting in twenty four (24) scenarios differing from the base 
scenario. 

Temperature 

(TEMP) 

[increment] 

Precipitation 

(FLOW) 

[multiplier] 

 

Wind Speed 

(WIND) 

[multiplier] 

 

-5.0 0.50 0.50 

-2.0 0.75 0.75 

-1.0 0.90 0.90 

-0.5 0.95 0.95 

0.5 1.05 1.05 

1.0 1.10 1.10 

2.0 1.25 1.25 

5.0 1.50 1.50 

 

The scenarios were run using the same initial conditions; a 'spin-up' period of 1 week was excluded 

from all summary calculations to reduce the influence of errors in the initial conditions. As potable 

water production is the focus of the study, water quality (temperature, suspended solids, 

chlorophyll, iron and manganese) at the reservoir offtake was analysed, along with 'whole of 

reservoir' characteristics, such as water temperature and g' (the reduced gravity due to 

stratification, Hodges and Dallimore, 2007). Changes in water quality were evaluated as changes in 

the mean concentration, the maximum concentration and the period of the simulation that the 

concentration was above a threshold value (green algal and cyanobacterial chlorophyll only, 1 and 

10 µg/L, respectively). In order to facilitate the interpretation of the phytoplankton dynamics, 



 

summaries of the state variables governing the growth of the two species modelled were calculated 

as means of the time series values. 

An Empirical Analysis of the Climatic Sensitivity of Chlorophyll-a to Temperature 

Historical records of chlorophyll-a and water temperature were collated from the primary reservoir 

surface monitoring location for the period 1998 to 2013. Monthly medians and anomalies were 

calculated for water temperature and chlorophyll-a concentration. The monthly anomalies were 

normalised to unity, so as to be able to compare directly to modelling results summarised with a 

similar method. Linear regressions were fitted to the raw anomalies and normalised values, both for 

the entire year and for the summer months only. 

Results and Discussion 

Reservoir Physical Characteristics  

The (modelled) physical properties of the Reservoir were altered by the changes in boundary 

conditions. The degree of stratification, as indicated by average g', was altered in all scenarios; 

increases in wind speed had a strong negative effect on lake stratification (Table 3). Increasing air 

and inflowing water temperature resulted in increased reservoir stratification, as did increased flow. 

Water temperature in the reservoir was not strongly influenced by the INFLOW scenarios, however 

the WIND and TEMP scenarios had strong effects on the mean of the average, minimum and 

maximum water temperatures observed over the simulations (Table 3). Only small impacts on 

reservoir volume and level were observed (not shown). 

Table 3. Summary of average physical properties for climatic sensitivity 
analysis of ELCOM-CAEDYM simulations of Happy Valley Reservoir. 

Factor 

Increment 

/Multiplier 

g' 

(/s2) 

Temp 

mean 

(°C) 

Temp 

max 

(°C) 

Temp 

min 

(°C) 

Original - 0.0502 20.5 21.8 16.5 

INFLOW 0.50 0.0481 20.9 22.2 16.6 

INFLOW 0.75 0.0490 20.8 22.0 16.6 

INFLOW 0.90 0.0496 20.6 21.9 16.5 

INFLOW 0.95 0.0498 20.6 21.9 16.5 

INFLOW 1.05 0.0503 20.5 21.8 16.5 

INFLOW 1.10 0.0505 20.5 21.8 16.6 

INFLOW 1.25 0.0510 20.3 21.7 16.6 

INFLOW 1.50 0.0513 20.2 21.5 16.6 

TEMP -5.0 0.0454 17.0 18.3 13.4 

TEMP -2.0 0.0481 19.1 20.4 15.9 

TEMP -1.0 0.0490 19.8 21.1 16.2 

TEMP -0.5 0.0495 20.2 21.5 16.4 

TEMP +0.5 0.0505 20.9 22.2 16.7 

TEMP +1.0 0.0511 21.3 22.5 17.0 

TEMP +2.0 0.0524 22.0 23.2 17.3 

TEMP +5.0 0.0571 24.1 25.4 17.5 

WIND 0.50 0.0984 22.7 25.9 17.0 

WIND 0.75 0.0681 21.5 23.4 17.0 

WIND 0.90 0.0560 20.9 22.4 16.7 

WIND 0.95 0.0528 20.7 22.1 16.6 

WIND 1.05 0.0474 20.4 21.6 16.6 
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WIND 1.10 0.0452 20.2 21.4 17.2 

WIND 1.25 0.0397 19.8 20.8 17.4 

WIND 1.50 0.0334 19.3 20.1 17.3 

Water Quality  

An increase in average modelled cyanobacterial chlorophyll (CyanoChl) was observed with elevated 

temperature, while simulated chlorophyte chlorophyll (ChloroChl) decreased (Figure 2a). The 

average concentration of reduced soluble iron (FeII) also increased with temperature while soluble 

manganese (MnII) was less responsive (Figure 2a). Sensitivity responses were close to linear near the 

origin (±10%), but some became non-linear at the extremes of the scenarios investigated. 

Exceedance of the threshold selected for cyanobacterial chlorophyll (CyanoChl) increased 

approximately linearly with increasing temperature above that of the original scenario, but had little 

effect below that level (data not shown). The FLOW scenarios had a consistently linear influence on 

reservoir water quality; increasing average concentrations of chlorophyte  (ChloroChl) and 

cyanobacterial chlorophyll (CyanoChl), MnII and FeII were observed in simulations with reduced 

flow; only the average concentration of suspended solids (SSOL1) decreased with decreasing flow  

(Figure 2b). Changes in maximum modelled values behaved similarly as did duration of exceedance 

for the chlorophyll variables (not shown).  

  



 

 

Figure 2. Change in mean modeled water quality values over the summer 
period in the different sensitivity analysis scenarios where temperature 
(a), rate of inflow and outflow (b) or wind speed (c) were incrementally 

changed. 
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The relationship between WIND and algal growth was obviously non-linear with large increases in 

the average concentrations of both algal groups with decreasing wind speed (Figure 2C). 

Cyanobacteria were especially favoured by low wind speeds. Reduction of wind speed from 90% to 

75% of today's averages resulted in a large increase in the duration of exceedance by cyanobacteria 

(not shown). The simulated phytoplankton production rates were low (~0.1 day-1) compared to what 

they can potentially be (~0.3-0.5 day-1) and probably are in HVR. This was also noted by Romero et 

al. (2005). The simulated whole lake averages of respiration exceeded that of production in 

cyanobacteria, indicating that they were limited to growing in a limited volume of the lake where 

sufficient light was available. Elevated temperatures increased cyanobacterial production rates but 

these increased production rates were kept in check by elevated respiration. There was very little 

change in the nutrient (N & P) limitation of phytoplankton, even under the INFLOW scenarios; 

simulated phytoplankton growth was more limited by light availability (Table 4). 

 

Table 4. Mean cyanobacterial growth characteristics in ELCOM-CAEDYM 
simulations. The ‘Limitation by’ values indicate the degree of growth 
limitation by light, phosphorus and nitrogen. It takes a value from 0 to 1; 
where 1 is unlimited and 0 is completely limited (no growth) 

Scenario Production Respiration Limitation by 

 (day
-1

) (day
-1

) Light Phosphorus Nitrogen 

Original 0.080 0.093 0.099 0.915 0.890 

INFLOW by 0.5 0.079 0.096 0.095 0.916 0.883 

INFLOW by 1.5 0.081 0.091 0.102 0.916 0.890 

TEMP by -5 0.061 0.076 0.101 0.917 0.890 

TEMP by +5 0.108 0.115 0.106 0.909 0.884 

WIND by 0.5 0.083 0.106 0.086 0.923 0.899 

WIND by 1.5 0.075 0.087 0.103 0.917 0.889 

 

Implied Model Climatic Sensitivity 

These scenarios demonstrate that ELCOM-CAEDYM is responsive to changes in environmental 

drivers that are expected to change under future climate. The model tested was not heavily 

calibrated and therefore the results are able to be generalised. The observed sensitivities are 

consistent with qualitative expectations on the basis of contemporary understanding of reservoir 

processes. For example, it is generally accepted that increased water temperatures and stratification 

may increase the prevalence of cyanobacteria and result in longer periods of decreased dissolved 

oxygen concentration and higher dissolved metal concentration. Other authors have observed 

model climatic sensitivities that resulted in increases in the proportion of cyanobacteria by 1 - 7.8% 

per 1 °C increase in temperature (using the model PROTECH; Elliott et al., 2006). From a review of 

the literature of the potential impact of climate on phytoplankton communities, Elliott (2012) 

concluded that projected future climate would result in increased relative abundance of 

cyanobacteria and changes in the phenology of phytoplankton dynamics but not necessarily an 

increase in the seasonal amount of phytoplankton biomass. These conclusions are consistent with 

the responses observed in this study. 



 

Important interactions with nutrient availability exist (Mooij et al., 2007) but this was not 

investigated here. As an independent factor, nutrient addition (sensu INFLOW scenarios) did not 

have a large effect on the phytoplankton dynamics, presumably because of the lack of nutrient 

limitation (Table 4). The model tested in this study employed a relatively simple representation of 

phytoplankton community dynamics; only two main functional groups were represented. 

Furthermore some physiological mechanisms that facilitate cyanobacterial dominance, despite being 

available in CAEDYM, were not used in the model application of Romero et al. (Romero et al., 2005). 

Greater sensitivity and/or more non-linearity may be expected if these mechanisms (e.g. buoyancy 

regulation) were implemented. 

The environmental drivers that were manipulated in the scenarios were not investigated factorially, 

however they are not completely independent; changes in mean and maximum water temperature 

occurred in the INFLOW and WIND scenarios (Table 3). This complicates the interpretation of model 

outputs without extensive comparison of individual simulations; an effort not warranted by the 

goals of this study. The scenarios were arbitrarily selected to quickly develop a picture of the 

sensitivity of the model to changed boundary conditions. As such, the important environmental 

drivers of dilution and nutrient loading are confounded in the multiplication of inflow volumes. 

Inflow scenarios assumed the same constituent concentrations and therefore the higher flow 

scenarios had higher nutrient loads. However as chlorophyll concentrations decreased as flow 

increased, it is apparent that dilution was a more important driver of algal biomass than nutrient 

load and availability. Despite this, the prediction that phytoplankton growth is rarely limited by 

nutrient availability may suggest that reducing the external load may be an option for reducing algal 

growth. The internal load was not investigated as part of this study but given the short water 

retention time of the reservoir, it is probably of minor importance, compared to the external load. 

The reduction of nutrient availability represents a potential strategy for adaptation to climate 

change and the likely negative effects on water quality resulting from increased cyanobacterial 

growth. Water quality models, such as ELCOM-CAEDYM, can have an important role to play in 

determining the potential benefit of a nutrient reduction program. 

Empirical Reservoir Climatic Sensitivity 

Linear regression between water temperature and chlorophyll median monthly anomalies did not 

resolve slope estimates significantly different from zero (0.105 ± 0.134, Pr(>|t|) = 0.43). The weak 

positive slope estimate combined with a poor predictive relationship (R2 = 0.014) demonstrates that 

surface water temperature did not play an important role in determining total chlorophyll in this 

period (Figure 3b); it also demonstrates that it was not negatively correlated with water 

temperature, as implied by the water quality model (Figure 3a). This might suggest that deficiencies 

in definition of model structure or parameter identification have resulted in a non-behavioral model 

response (one not consistent with our expectations). These deficiencies could, for example, be found 

in the parameterization of the temperature response functions for growth, or be the product of the 

over-simplification of the phytoplankton community. This remains speculative, as this simple 

comparison cannot resolve the differences between the processes structuring algal growth in the 

model scenarios as compared to those operating over a longer period and in different years, within 

the reservoir. It must further be noted that the empirical analysis is limited to (monthly) anomalies 

less than +2°C and so could not explore the full range of (annual) anomalies as defined by the model 

scenarios. 
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Figure 3. Comparison of (a) model derived climate sensitivity to (b) 
empirical reservoir climate sensitivity of chlorophyll-a to temperature in 
summer (Dec, Jan, Feb). In panel (b) each point represents the unity 
normalized anomaly from the monthly median value calculated over the 
period 1998-2013 and is labelled as yyyy-mm. 

4. Conclusions  

This study demonstrated that ELCOM-CAEDYM is sensitive to climate drivers and suitable for use in 

climate impact studies. It further highlighted the important factors in determining phytoplankton 

growth and that any changes in inflowing water quality will be of major importance to the reservoir 

water quality dynamics. 

 

  



 

Chapter 2. Direct impacts of climate change on water quality in Mount 

Bold Reservoir using downscaled meteorology. 

Introduction 

The potential impacts of climate change on water quality can be evaluated using integrated 

modelling schemes (Mimikou et al., 2000). Such modelling schemes consist of catchment and 

reservoir models with boundary conditions defined by downscaling or weather generator methods 

(Schlabing et al., 2005, 2014). A set of downscaling products were generated by Task 3 of the Goyder 

Water Research Institute Project C.1.1. These downscaling products were used to construct a series 

of simulations of Mount Bold Reservoir using the General Lake Model – Framework for Aquatic 

Biogeochemical Models (GLM-FABM), a coupled 1D hydrodynamic – water quality model (Hipsey et 

al., 2013). Some important meteorological variables required as model boundary conditions/inputs 

were not available from the Task 3 downscaling, including wind speed, cloud cover and longwave 

radiation. These variables were therefore imputed from relationships between measured weather 

variables from a range of relevant data sources as described below. The imputed data is compared 

to the original dataset compiled for Mount Bold Reservoir for the application of DYRESM-CAEDYM; 

the input dataset comprises data from observations at Mount Bold Reservoir as well as Happy Valley 

Reservoir and other sites. The base case model has been validated for this dataset. Therefore the 

statistical properties of the downscaled data are compared to this three year period to evaluate 

their consistency and therefore their suitability for implying potential changes in water quality in 

South Australia’s reservoir from climate change. This report presents a preliminary investigation of 

the impacts and caution must be applied in the interpretation of the results, as many sources of 

error remain to be characterised. 

Methods 

The first task required was the development of methods to impute the non-downscaled variables. It 

is normal practice to base model input data on ‘on reservoir’ measurements of meteorology in so far 

as possible. However, available datasets are rarely complete and gap-filling, by imputation or 

modelling of data, is generally applied when setting up model boundary conditions and forcing 

variables, in this context, meteorology and inflows to, and withdrawals from a reservoir. 

Sources of data 

Data was sourced from the NOAA ISD-Lite dataset (ftp.ncdc.noaa.gov/pub/data/noaa/), the 

Australian Bureau of Meteorology’s SILO data base (www.longpaddock.qld.gov.au/silo), weather 

underground (www.wunderground.com) and SA Water’s own data from floating weather stations 

(i.e. Figure 4).  

Wind speed 

The method downscaled wind speed consisted of using the weather states of the NHMM, or other 

weather states defined by the other variables (i.e. wet/dry state), to develop conditional 

distributions of the required variables. As wind speed at the surface of the reservoir is of primary 

interest, preferably measured using a floating weather station (Figure 1), there is a limited amount 

of data available to develop these distributions. The available observed data must be further divided 

among the conditional weather states. Therefore, generating longer time series of wind speed by 

linear modelling from other nearby stations was investigated. It was hoped that this extrapolation 

ftp://ftp.ncdc.noaa.gov/pub/data/noaa/
http://www.longpaddock.qld.gov.au/silo
http://www.wunderground.com/
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approach would allow the generation of satisfactory empirical distributions or provide better 

resolved parameters for parametric distributions. 

Data for wind speed from a number of sites were trialled and their suitability evaluated by visualising 

time series (e.g. Figure 5), autocorrelation properties (Figure 6), frequency distributions (Figure 7) 

and fitting linear regressions (Figure 8; Figure 9; Figure 11). The most similar statistical properties 

were found with the physically closest meteorological station (Kuitpo). Regressions were also fitted 

to monthly subsets of the data in order to investigate if any seasonality was influencing the 

regression performance. This additional complexity did result in slightly lower residual error and a 

marginal improvement in the distribution of the residuals (Figure 10; Figure 12). Simulated data from 

the models developed were subjected to Kolmorgorov-Smirnov (K-S) tests to test the reproduction 

of distribution properties; the wind speed predictions from Kent Town appear similar but the null 

hypothesis, that the samples come from the same distribution, was rejected (Figure 13). The wind 

speed distributions generated from the Kuitpo model, however, were able to be considered to be 

the same as the observations at Mt Bold (Figure 14). Despite having the best statistical performance, 

the Kuitpo station had a much shorter period of observations than the Kent Town station. 

Consequently, the monthly models were used to predict an extended range of wind speed data from 

both the Kuitpo and Kent Town stations. The longer period of wind speed data generally allowed 

resolution of conditional distributions of wind speed by NHMM weather state (Figure 15), however 

some less frequent weather states remain poorly resolved. Some months seem to have weather 

states that have different distributions, May and September, for example. Changes in the frequency 

of weather states may therefore result in changes in wind speed distribution. 

Two parametric distributions, Gamma and Weibull, were fitted to wind speed conditional on month 

and NHMM weather state (these distributions are generally considered to fit wind speed data well) 

using fitdistr from the MASS package (Venables and Ripley, 2002). The best of the two distributions 

was selected on the basis of the log likelihood calculated during the distribution fitting. A 

representative example was selected (Figure 16) which demonstrates the differential performance 

of the distributions within different weather states and one of the more poorly resolved ‘rare’ 

weather states (Figure 16, NHMM state = 4). The parameters estimated during the fitting process 

were subsequently used to stochastically generate wind speed for a given month and weather state.  



 

 

Figure 4. Floating weather station at Mt Bold Reservoir. Featuring 
ultrasonic wind speed and direction, global and long wave radiation 
sensors, air temperature and humidity and water temperature at 
multiple depths. 
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Figure 5. Time series of daily average wind speed measured at Mount 
Bold, Kent Town and Kuitpo.  The data downloaded from the NOAA ISD-
Lite database was found to contain erroneous data (marked by the red 
bar in the bottom panel) which was excluded from subsequent analyses.  

  



 

 

Figure 6. Autocorrelation function (ACF) of time series of wind speed 
over 2003-2006.  
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Figure 7. Histograms of daily wind speed observed at Mount Bold, Kent 
Town and Kuitpo. 



 

 

Figure 8.  Daily average wind speed at Mount Bold Predicted by observed 
daily average wind speed at other observation stations. These regression 
fits are subsequently described as ‘lumped’ fits. The black line is the 1:1 
line while the red line is the fitted line. 
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Figure 9. Daily average windspeed at Mount Bold predicted by daily 
observed wind speed at Kent Town (#); the regression was applied 
conditionally by month and the fits used to generate subsequent 
‘monthly’ fits. The black line is the 1:1 line while the red line is the fitted 
line. 



 

 

 

Figure 10. Lumped vs monthly model fit comparison for Kent Town. Top 
panel: Observed vs predicted wind-speed at Mount Bold Reservoir. 
Bottom panels: histograms of residuals. 
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Figure 11. . Daily average wind-speed at Mount Bold predicted by daily 
observed wind-speed at Kuitpo (#); the regression was applied 
conditionally by month and the fits used to generate subsequent 
‘monthly’ fits. The black line is the 1:1 line while the red line is the fitted 
line. 

  



 

 

 

 

Figure 12. Lumped vs monthly model fit comparison for Kent Town. Top 
panel: Observed vs predicted wind-speed at Mount Bold Reservoir. 
Bottom panels: histograms of residuals. 
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Figure 13. Kent town empirical cumulative distribution function (ECDF) 
of prediction and Kolmogorov-Smirnoff (K-S) test statistics. The p-value 
indicates that the null hypothesis that the samples come from the same 
distribution is rejected and we must conclude that the distributions are 
different. 

 

Figure 14. Kuitpo empirical cumulative distribution function (ECDF) of 
prediction and Kolmogorov-Smirnoff (K-S) test statistics. The p-value 
indicates that the null hypothesis that the samples come from the same 
distribution is not able to be rejected and therefore we cannot conclude 
that the distributions are different. 

  

  



 

 

Figure 15. ECDFs of windspeed conditional on weather state in each 
month as derived by comparison of the 'Set 9' NHMM states (for Kuitpo) 
and wind-speed predicted for Mt Bold Reservoir from models developed 
between Kuitpo and Kent Town observations. Different lines represent 
different monthly weather states which are arbitrary as compared to 
other months. 
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Figure 16. Example of wind speed distribution fits conditional on month 
and NHMM weather state. Gamma and Weibull parametric distributions 
were fitted and the best selected according to maximum log likelihood. 

 

Solar radiation, cloud cover and longwave radiation 

Clear sky shortwave 

Long term SILO data and the Task 3 downscaling products contain the shortwave radiation variable, 

which allows the development of a function to estimate cloud cover. An estimate of cloudiness is 

used to estimate the longwave radiation balance in many lake models, when measured data is 

unavailable.  First, the observed or downscaled or modelled radiation (Eo) is compared to the clear 

sky solar radiation (Ec) for that location. The clear sky radiation function (Appendix 1: 

clearSkyShortWave) was determined from solar geometry calculations and an optimisation to the 

solar pyranometer measurements made at Happy Valley Reservoir from 2007-02-18 to 2012-10-09. 

The optimisation algorithm fitted the atmospheric attenuation coefficients of the Hottel (1976) 

model using a subset of observation days visually evaluated to be cloud free (i.e. smooth curves with 

high peaks). The function was fitted using a contracted Nelder-Mead direct search minimisation of 

the sum of absolute differences between the daily maximum observed solar radiation and that 

estimated by the clear sky radiation function (Appendix 1). The fitting process resulted in a 

satisfactory fit however some residual curvature remained in the observed vs modelled relationship 

(Figure 17). This is likely the result of topographic effects on the morning and evening radiation 

intensity. The days selected for parameter estimation were subsequently validated against cloud 

cover observations at Mount Barker, the closest BOM site with cloud cover observations (Figure 18). 



 

The function was then vectorized (made to accept vectors as arguments; Appendix 1: 

clearSkyShortWave.v) and incorporated into a function to calculate average short wave radiation for 

any given date (Appendix 1: AveSolarRadiation.v). 

 

 

 

Figure 17. Results of fitting clear sky radiation model. Red line is the 1:1 
line. 
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Figure 18. Examples of daily trajectory of observed and modelled 
radiation at Happy Valley Reservoir.  

  



 

Downscaling cloud cover – a novel method 

A method to impute cloud cover was developed with the proportion of ideal radiation observed (Ep): 

𝐸𝑝 = (
𝐸𝑜
𝐸𝑐
) 

Ep was related to proportional cloud cover (Cp; cloud cover in Octas/8) via a scaling function: 

𝐶𝑝 =

{
 
 

 
 
𝐸𝑐
𝑃𝑛
,  𝑖𝑓 𝐸𝑝 <

𝐸𝑐
𝑃𝑛
 

𝐸𝑐𝑃𝑥 , 𝑖𝑓 𝐸𝑝 > 𝐸𝑐𝑃𝑥

1 − 𝑃𝑔

(
𝐸𝑜−(

𝐸𝑐
𝑃𝑛

)

𝑃𝑔
𝑆𝑥

)

 

Where: 

Pn = A fitted parameter representing the proportion of Ec below which Cp = 1 

Px = A fitted parameter representing the proportion of Ec above which Cp = 0 

Pg = A fitted parameter that defines the non-linearity of the distribution of Cp between 0 and 1. 

And: 

𝑆𝑥 = (𝐸𝑐𝑃𝑠) − (
𝐸𝑐
𝑃𝑚
) 

This function (Appendix 1: cloudCoverFromSRdev) effectively scales Ep between minimum and 

maximum values with a non-linear distribution determined by the parameter Pg. The parameters Pn, 

Px and Pg were fitted by minimising the sums of squares of differences in the sample quantiles 

between the observed and predicted proportional cloud cover time series. Therefore, the model was 

fitted to reproduce the statistical properties of the cloud cover observations as opposed to directly 

predicting cloud cover from radiation. To investigate the generality of the parameters, the 

parameters were estimated for cloud cover observations for 3 sites, over the simulation period and 

the full station record (Table 5). Ideally, parameters would represent both the observations over the 

period of the established reservoir model simulation period and the longer term cloud observations. 

Examining the longer term datasets shows that reproduction of cloud cover is not drastically 

different when predicted from the longer term distribution of cloud cover. The parameterisation for 

the Mount Bold GLM simulation period was considered for use and compared to the method 

described in the following section (Appendix 1: cloudCoverFromSR.MtBoldGLM). 
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Table 5. Parameters estimated for cloud cover prediction function from 
quantile fitting and performance metrics when compared to cloud 
observations at Mount Barker (closest station with overlapping 
observations). 

Location Period Pn Px Pg RE Slope R
2
adj 

MtBold GLM 2003-01-01 - 2006-05-09 4.45 1.05 1.01 0.24 0.951 0.720 

Kent Town 2003-01-01 - 2006-05-09 4.41 1.05 1.01 0.216 0.932 0.723 

Mount Barker 2003-01-01 - 2006-05-09 4.80 1.06 1.02 0.182 0.831 0.736 

Adelaide Airport 2003-01-01 - 2006-05-09 2.10 1.08 1.01 0.288 0.894 0.732 

Kent Town 1954-12-31 - 2011-12-31 4.41 1.05 1.01 0.225 0.905 0.727 

Mount Barker 1990-02-01 - 2011-12-31 4.49 1.07 1.02 0.271 0.825 0.737 

Adelaide Airport 1955-02-15 - 2011-12-31 4.69 1.08 1.01 0.213 0.895 0.730 

  

Downscaling cloud cover – published methods 

A number of alternative methods were compared to the method above, namely the linear method 

of Bristow and Campbell (1984): 

𝐶𝑝 = 1 − (
𝑇 − 𝑇𝑚𝑖𝑛

𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛
) 

 

And that of Black (1956):  

 

𝐶𝑝 = {
0.34 − √0.342 + 4 × 0.458(0.803 − 𝑇)

−2 × 0.458
 𝑖𝑓 𝑇 ≤ 0.803

0 𝑖𝑓 𝑇 > 0.803

  

Where T is atmospheric transmissivity, and Tmin and Tmax are the threshold parameters, namely 

the transmissivity at which complete cloud cover occurs and that at which the sky is considered 

cloud free, respectively (Figure 19) 



 

 

Figure 19. Form of the Bristow and Campbell (1984) linear atmospheric 
transmissivity and cloudiness function. 

Calibration of the functions was conducted by minimising differences in the distributions (sample 

quantiles) of the modelled and observed cloud cover time series, as per the novel function described 

above. Ultimately these simpler empirical equations were demonstrated to produce more plausible 

output distributions than the novel equation. The function of Bristow and Campbell was adopted for 

the downscaling performed for this report. 

Reservoir water budget  

The hydraulic management of Mount Bold Reservoir is conducted in response to rainfall and run-off, 

evaporation, flood mitigation, customer demand and environmental flows. The system is provided 

with water from the Murray-Darling Basin via the Mannum-Adelaide pipeline that discharges into 

the Onkaparinga River at Hahndorf. As such, the hydraulics are partially decoupled from the climate 

system and determined primarily by operational management. Mount Bold Reservoir supplies Happy 

Valley Reservoir via the Onkaparinga River, Clarendon Weir, and an underground tunnel. 

Subsequently, the water is treated at Happy Valley Water Filtration Plant which supplies a significant 

proportion (~50%) of metropolitan Adelaide’s water supply. Optimising the response of such a 

system to climate drivers is a significant body of work and was beyond the scope of this study (see 

Maheepala et al., 2014). However, given the significance of the Onkaparinga-Happy Valley system it 

is likely that it will continue to operate within similar hydraulic parameters into the future and an 

assumption of operation based on recent years will be acceptable in the first instance. 

Flow from catchment 

The boundary conditions for the inflows from the catchment in the model scenarios were generated 

by repeating observed time series of flow and adjusting them to prevent model errors relating to 

reservoir water capacity. This was performed for the following reasons: 

1. Stream flow projections were not available from the other project partners 
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2. An assessment of the direct impacts of the downscaled datasets upon reservoir water 

quality is a fundamental component of an integrated assessment.  

Demand and inter-basin transfers 

Demand from the system, and therefore release from the reservoir to the Onkaparinga River 

downstream, was assumed to be the same as historical observations. The following assumptions 

about the system lead to the conclusion that total volumetric yield of the reservoir is unlikely to 

increase in the future:  

1. The local catchment yield is fully allocated. 

2. Allocations from the Murray-Darling Basin are unlikely to increase. 

3. No major expansion in capacity is planned for the Happy Valley water filtration plant. 

4. Increases in demand for the greater Adelaide region will be satisfied by augmentation of 

supply to other parts of the SA Water network. 

Mount Bold Reservoir is therefore likely to have similar operating rules going forward and the 

hydrologic budget of the simulations was established as such. The hydrological regime of the 

reservoir was kept as close to that for the years defining the base simulation as possible.  However, 

changes to the hydrological inputs associated with changes in direct rainfall inputs and evaporative 

losses and the differences in inflow and outflow between the years of the base simulation needed to 

be made to avoid violating the GLM model requirements for water budgeting. 

Water quality concentrations 

Concentrations of water quality constituents in catchment derived inflows were assumed to remain 

the same as per the observed time series used for the base scenario. This is consistent with the 

assumptions made relating to inflow volumes.  

Table 6. Ranges of water quality in reservoir inflow boundary conditions. 

 Minimum  
(mM / mg/L) 

Mean 
(mM / mg/L) 

Maximum  
(mM / mg/L) 

Dissolved oxygen 273 / 8.5 320 / 10 375 / 11.7 
Reactive silica 178 / 3.0 350 / 5.8 5623 / 93.7 
Nitrogen as Ammonia 0.0 / 0.0 346 / 24.7* 10929 / 780* 
Nitrogen as Nitrate 0.0 / 0.0 14.1 / 1.0 82.9 / 5.9 
Filterable reactive phosphorus 0.161 / 0.005 0.968 / 0.031 3.29 / 0.106 
Particulate organic nitrogen 2.86 / 0.204 27.6 / 1.97 98.6 / 7.04 
Dissolved organic nitrogen 2.86 / 0.204 27.6 / 1.97 98.6 / 7.04 

Particulate organic phosphorus 0.065 / 0.002 2.95 / 0.095 21.3 / 0.69 
Dissolved organic phosphorus 0.065 / 0.002 2.95 / 0.095 21.3 / 0.69 
Particulate organic carbon 28.3 / 2.36 63.6 / 5.30 102 / 8.49 
Dissolved organic carbon 255 / 21.23 572 / 47.6 915 / 76.2 

* product of transient peak ammonia episode 

Construction and running of scenarios 

A set of folders containing model configuration files was first constructed using scripted “for- loops” 

and the following file operations as described in Figure 20. 



 

1. Copy base files required (shared parameter configurations etc: aed_geochem_pars.dat, 

aed_pathogen_pars.nml, aed_phyto_pars.nml, aed_zoop_pars.nml, fabm.nml) 

2. Update the base glm.nml file with appropriate file references and simulation period details 

3. Format the downscaled meteorological data to the appropriate format and combine with 

the wind speed, cloud cover and longwave radiation data downscaling developed in this 

study. 

4. Construct and correct the inflow and outflow data.  

5. Run the simulations using glm.exe 

6. Compute summary statistics for variables across time period, GCM, emissions scenario, 

month. The following summary statistics were calculated: quantiles corresponding to 

probability = 0.01, 0.25, 0.5, 0.75 and 0.99 corresponding to the 1st, 25th, 50th (median), 75th 

and 99th percentile. 

  

scenario       

sim folders 

base files 

updated 

glm.nml 

downscaled 

glm.met 

corrected     

in/out-flow.csv 

.dll 

Summary 

statistics 

1. 2. 
3. 

4. 

5. 

6. 

glm.exe 

Figure 20. Schematic of scenario construction, 
simulation and summary.  
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Statistical analysis of results 

Besides presenting the ensemble changes in water quality variables, the data was further explored 

using principal component analysis (Husson et al., 2015) and multiple linear regression with relative 

importance assessment (Grömping, 2006). Principal component analysis was used to evaluate the 

complexity of the relationships (correlations) within the model results and to evaluate the changes 

in these relationships, focussing on comparing the historical period and the most severe climate 

change scenario. Multiple linear regression was used to specifically investigate the reasons for the 

projected changes in abundance of the cyanobacterial functional group. The relative importance of 

the different regressors was evaluated using the lmg algorithm implemented in the relaimpo 

package in ‘R’ (R Development Core Team, 2011). Briefly, this process involves partitioning of the 

goodness-of-fit statistic, R2, by comparing regression models with terms incrementally and 

hierarchically removed; this then allows the evaluation of the relative importance of those 

regressors, according to their contribution to the goodness-of-fit of the overall model.  

Results 

The figures in this section generally have the following structure. Except in a few cases, the data are 

presented as box and whisker plots where the box represents the interquartile range (25th to 75th 

percentile) and the whiskers represent the 1st to 99th percentile range. The line inside the box 

represents the median of the data observed (simulated). In the cases that a bar plot with error bars 

is presented, the main bar represents the median and the error bars represent the inter-quartile 

range. 

Summary of Meteorological and Hydrological Inputs 

Inputs of solar radiation followed generally expected seasonal patterns with the highest insolation in 

December and January (Figure 21). Very little difference between the historical and future periods 

was observed; slight increases in future periods, compared to historical, were apparent in the spring 

(Sep-Nov) and in the month of April. These increases in solar radiation, which are derived from the 

Task 3 downscaling product are propagated by the downscaling performed in this study to result in 

changes in cloud cover (Figure 23) and down welling longwave radiation (Figure 22). Small 

differences in the distributions of cloud cover was observed, mostly in the months of April, 

September, October and November, consistent with changes in shortwave radiation.  However some 

further differences in the distributions of cloud cover, not apparent in the distributions of solar 

radiation data can be observed, i.e. slight decreases in cloud cover in the future in January and 

February (Figure 23). 

Increases in air temperature were a characteristic of the projection boundary layer in all seasons 

(Figure 24), consistent with the trends and variability projected by the downscaled GCMs. Relative 

humidity was projected to decrease into the future and with higher emissions (Figure 25). 

Reductions were slight in winter and more pronounced in autumn.  

Wind-speed, which was the product of this work, as opposed to directly derived from the Task 3 

outputs, showed no trends across time or emissions scenarios (Figure 26). This is as expected as the 

transition probabilities between the weather states did not change between the different periods, or 

emissions scenarios. The consistency of the distributions demonstrates that this important variable 

was consistently stochastically sampled across time and emission scenario. The trends in near 

surface wind speed projected by GCMs and the ‘stilling’ phenomenon observed in recent decades, 

while small on an annual scale (−0.009 m s-1 a-1 McVicar et al. 2008), may ultimately amount to a 



 

significant quantity at the timescale of climate projections (McVicar et al., 2012). The potential 

implications for the projections made from these boundary conditions will be discussed later.  

 

 

 

Figure 21. Shortwave radiation in the downscaled meteorological 
boundary conditions. 
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Figure 22. Longwave radiation in the downscaled meteorological 
boundary conditions. 

 



 

 

Figure 23. Cloud cover in the downscaled meteorological boundary 
conditions. 
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Figure 24. Air temperature in the downscaled meteorological boundary 
conditions. 

 



 

 

Figure 25. Relative humidity in the downscaled meteorological boundary 
conditions. 
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Figure 26. Wind speed in the downscaled meteorological boundary 
conditions. 

  



 

Water temperature, stratification and surface energy balance  

Surface water temperature increased with the progression of time and with greater greenhouse gas 

emissions. Very little difference was observed between the two emissions scenarios in near future 

periods (2011-2040), as opposed to much greater differences at the end of the century when the 

greatest difference between these representative concentration pathways occurs (Figure 27). The 

minimum water column temperature, which occurs in the hypoliminon, was projected to increase in 

all seasons (Figure 28) and showed notable variation in seasonal pattern; in Jan-Mar, the occurrence 

of rare mixing events probably contributed to the high marginal values observed. Lake Number (see 

Etemad-Shahidi and Imberger, 2006; Read et al., 2011), which describes the probability that 

diapycnal mixing will occur (upwelling or internal wave generated mesoscale mixing, with lower 

numbers suggesting a higher probability of such events) was highly variable (only the interquartile 

range could be shown, Figure 29). Changes in daily shortwave heat flux (Figure 30) closely matched 

the shortwave radiation shown in Figure 21 (these quantities are related by the lake surface area 

and the reflectance of the lake surface due to roughness). Latent heat flux, the energy lost due to 

evaporation from the reservoir surface, was greater in the future projection scenarios and greater in 

scenarios with greater radiative forcing. The largest differences in latent heat flux between scenarios 

was in the spring (Figure 31). The sensible heat flux, which is the loss of heat due to convection 

(driven by the temperature difference between the water surface and the atmosphere), increased 

only slightly with future projection period and with increased radiative forcing (Figure 33). Daily net 

longwave heat flux decreased slightly, meaning the reservoir was losing less heat, predominantly in 

spring and winter (Figure 33). Daily volumetric evaporation from the lake surface increased in all 

months, ranging from relatively small increases in median values in winter months (i.e. 1.4 - 6.7% in 

July) to the greatest increases occurring in spring (i.e., 13.4 – 33.8% in October; Figure 34) 
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Figure 27. Surface water temperature in reservoir simulations with 
boundary conditions derived from downscaled climate data (SA Climate 
Ready). 

 

  



 

 

Figure 28. Minimum water temperature in reservoir simulations with 
boundary conditions derived from downscaled climate data (SA Climate 
Ready). 
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Figure 29. Lake Number in reservoir simulations with boundary 
conditions derived from downscaled climate data (SA Climate Ready). 

 

  



 

 

Figure 30. Daily shortwave heat flux in reservoir simulations with 
boundary conditions derived from downscaled climate data (SA Climate 
Ready). 
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Figure 31. Daily latent heat flux in reservoir simulations with boundary 
conditions derived from downscaled climate data (SA Climate Ready). 

 

  



 

 

Figure 32. Daily sensible heat flux in reservoir simulations with boundary 
conditions derived from downscaled climate data (SA Climate Ready). 
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Figure 33. Daily net longwave heat flux in reservoir simulations with 
boundary conditions derived from downscaled climate data (SA Climate 
Ready) 

 

  



 

 

Figure 34. Daily volumetric evaporation in reservoir simulations with 
boundary conditions derived from downscaled climate data (SA Climate 
Ready) 
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Abiotic water quality parameters 

The increases in salinity projected by these scenarios was in all cases less than 3%. This small 

increase is generated by the increase in evaporation from the water surface. Near term (2011-2040) 

increases over the historical period were similar to 0.5 to 1.0 % increases depending on emission 

scenarios (Figure 35). In the short-term, decreases in dissolved oxygen concentrations, similar to a 

1.7 – 4.2 % decrease (winter) to 4.5 – 7.9% decrease (summer) is projected. By the end of the 

century, these reductions in dissolved oxygen concentration are projected to be similar to 3.6 – 5.7 

% (winter) and 10 – 16% (summer) (Figure 36). While dissolved inorganic carbon increased by similar 

percentages to salinity (Figure 37), pH did not change in the scenarios (not shown). Changes in 

filterable reactive phosphorus concentrations were inconsistent and generally less than 3% (Figure 

38). There was little impact on the concentrations of dissolved organic nutrients; dissolved organic 

nitrogen and dissolved organic phosphorus showed no differences over time periods or emissions 

scenarios (not shown). Nitrate and Ammonium concentrations changed with time period and 

emission scenario. By the end of the century, reductions in median nitrate concentration were in the 

ranges of 1.6 – 15 % and 2.8 – 24 % for the RCP4.5 and RCP8.5 scenarios, respectively (Figure 39). 

Ammonium concentrations increased in the summer and autumn but were stable in winter (Figure 

40). Dissolved organic carbon concentration varied by less than 3% in all scenarios (not shown). 

Median particulate organic carbon increased by between 15 and 35% by the end of the century, 

depending on the month and scenario (Figure 41).  



 

 

Figure 35. Salt concentration in reservoir simulations with boundary 
conditions derived from downscaled climate data (SA Climate Ready) 
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Figure 36. Dissolved oxygen concentration in reservoir simulations with 
boundary conditions derived from downscaled climate data (SA Climate 
Ready) 

  



 

 

Figure 37. Dissolved inorganic carbon concentration in reservoir 
simulations with boundary conditions derived from downscaled climate 
data (SA Climate Ready) 
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Figure 38. Filterable reactive phosphorus concentration in reservoir 
simulations with boundary conditions derived from downscaled climate 
data (SA Climate Ready) 

  



 

 

 

Figure 39. Nitrate concentration in reservoir simulations with boundary 
conditions derived from downscaled climate data (SA Climate Ready) 
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Figure 40. Ammonium concentration in reservoir simulations with 
boundary conditions derived from downscaled climate data (SA Climate 
Ready) 

  



 

 

 

Figure 41. Particulate organic carbon concentration in reservoir 
simulations with boundary conditions derived from downscaled climate 
data (SA Climate Ready) 
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Phytoplankton variables 

Green algae were very unsuccessful in future climate scenarios, with 50 – 500% reductions in 

median biomass projected in the near term and 100 – 1000% reductions by the end of the century 

(Figure 42). Diatom abundance was also negatively affected by future climate (Figure 43). The 

functional group parameterised to represent the cyanobacteria Microcystis was more successful in 

the future climate scenarios, with increases in median biomass of between 50 and 75% in the near 

term and 68 – 82% by the end of the century (Figure 44). The Yellow-Brown algae, or cryptophytes 

(for example the genera Cryptomonas and Croomonas) remained competitive in the spring, they 

increased in median biomass by a few percent in September and October in the future scenarios. 

However throughout the rest of the year they performed worse, with reductions of up to 215% 

(Figure 45). The functional group representing dinoflagellates similar to Peridinium was more 

successful in the future between September and January; however a decline in their performance 

was observed in the months between March and July (Figure 46). In terms of biomass, green algae 

and cyanobacteria dominated the modelled community; under projected future conditions the 

green algae were out-competed by the cyanobacteria. The total phytoplankton biomass, calculated 

as the sum of the median biomass (as carbon) of all the modelled phytoplankton groups increased 

by up to 53% in the highest emissions scenario and latest climatic period (2071-2100). Interestingly, 

the projected change in total phytoplankton biomass between the historical period and the earliest 

projection period (2011-2040) ranged from -7% (April) to +28% (November), with most months in 

the range +10 – +25%. 



 

 

Figure 42. Concentration of carbon within phytoplankton functional 
group representing Chlorophytes (green algae) in reservoir simulations 
with boundary conditions derived from downscaled climate data (SA 
Climate Ready) 

  



 

61 

 

Figure 43. Concentration of carbon within phytoplankton functional 
group representing Bacillariophytes (diatoms) in reservoir simulations 
with boundary conditions derived from downscaled climate data (SA 
Climate Ready) 

  



 

 

Figure 44. Concentration of carbon within phytoplankton functional 
group representing cyanobacteria (Microcystis-like cyanobacteria) in 
reservoir simulations with boundary conditions derived from 
downscaled climate data (SA Climate Ready) 
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Figure 45. Concentration of carbon within phytoplankton functional 
group representing Cryptophytes (crypto; yellow-brown algae) in 
reservoir simulations with boundary conditions derived from 
downscaled climate data (SA Climate Ready) 

  



 

 

Figure 46. Concentration of carbon within phytoplankton functional 
group representing Dinoflagellates (perid; Peridinium-like 
dinoflagellates) in reservoir simulations with boundary conditions 
derived from downscaled climate data (SA Climate Ready) 
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Statistical analyses of simulated outputs 

Multivariate correlation of algal groups from meteorological and environmental variables 

Following pre-processing, where the data was centred, scaled and transformed by the Yeo-Johnson 

method (Yeo and Johnson, 2000) as implemented in the caret package in R (Kuhn et al., 2016). The 

analysed variables were reduced to avoid those with extremely high, or extremely low correlations 

(< -0.9 or > 0.9) due to simple physical or semantic reasons, i.e. maximum temperature and surface 

temperature or lake level and surface area. These correlations, and those of the other variables, can 

be seen in Figure 47. A principal components analysis was conducted using the FactoMineR package 

(Lê et al., 2008). An example of a scree plot for the analysis is shown, demonstrating that almost all 

the variation can be described by two principal components (Figure 48). In both the historical and 

future period analysed (1961-1990 Historical and 2071-2100 RCP8.5), the first two principal 

components accounted for more than 90% of the variance in the data (see axis labels in Figure 49 

and Figure 50); therefore only these two dimensions are presented in the vector plots. The vector 

plots represent the correlation of the algal groups (black arrows) with each other and the 5 most 

important quantitative supplementary variables (blue arrows). There are broad similarities between 

the vector plots for the two periods, suggesting similar processes are at play. In the future, the micro 

group vector has moved a little further away from the green and perid vectors, indicating some 

separation in the conditions in which these groups are occurring. As it is difficult to conclude much 

about the processes responsible for this, a multiple linear regression was applied to investigate the 

role of the environmental variables in determining the success of micro.  

Multiple linear regression of cyanobacterial abundance 

Multiple linear regression was applied to Yeo-Johnson transformed variables. In the first instance, 

the most parsimonious linear model (the simplest model that appropriately fits the data) was 

identified using a step-wise model selection algorithm based on Akaike’s An Information Criterion 

(AIC) as implemented in the MASS package (Venables and Ripley, 2002). The factors of the model 

selected are presented in the left-most column of Table 7 and are rank ordered according to their 

relative importance as determined for the historical period, using the methods defined in 

(Grömping, 2006). Month of the year was by far the most important predictor of the amount of 

micro (49.1%), followed by Nitrate (14.9%) and Surface Temperature (13.3%). Smaller amounts (< 

10%) were attributable to Ammonium, Lake Number, Salt (salinity) and the interactions between the 

other factors. As the period into the future progresses, and with higher emissions scenarios in the 

same time period, the month of the year and Nitrate concentration become progressively less 

important for determining the occurrence of micro, while Surface Temperature and Ammonium 

become progressively more important.  



 

 

Figure 47. Correlation plot for weekly GLM-FABM outputs from historical 
projection period 

 

 

Figure 48. Scree plot of variance attributable to the principal components 
in the historical period. 
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Figure 49. Vector plot of PCA analysis of historical period 

 

Figure 50. Vector plot of PCA analysis of 2017-2100 RCP 8.5 projections 



 

Table 7. Results of the multiple linear regression analysis with relative 
importance assessment of model factors and interactions. 
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Discussion 

The main purpose of this study was to demonstrate the suitability of the Goyder Task 3 downscaling 

dataset for use in modelling the impacts of projected climate change on reservoir water quality. To 

achieve this required additional downscaling of wind and cloud cover. Potential methods were 

developed, but there remains the opportunity for more rigorous testing of the methods applied and 

the use of alternative methods, which may, for example refer to the original GCM outputs. At least, 

it would be appropriate to further test the sensitivity of the results to some of the key functions and 

their parameters. This would not be a trivial undertaking and has not been attempted at this stage. A 

strategy to examine the sensitivity on a subset of model runs would be suggested; running such an 

analysis on the full set of scenarios would be prohibitive (for example a single set of runs results in 

52 GB of model outputs). Only a single realisation of the 100 stochastic realisations was used; it 

would also be appropriate to test the robustness of the results by comparing a number of 

realisations for a given scenario. 

While this model analysis may provide useful guidance on climate change impacts, it relies upon a 

number of assumptions that must be considered during interpretation: 

1. These responses represent those of a relatively simple phytoplankton community and there 

is the possibility for changes in community structure that cannot be modelled with a 

deterministic functional group model as implemented. However the responses generated 

are likely to represent the physiological reality that conditions are shifting to favour 

cyanobacteria in the future, as demonstrated by many empirical and model-based studies. 

2. No impacts of changes in evapotranspiration or precipitation on the catchment hydrology 

were considered. This work was performed in parallel to the hydrological modelling and as 

such this was beyond the scope of the work. 

3. Following on from this, no impact of climate change effects on the constituents of water 

flowing from the catchment was considered (i.e. nutrients, turbidity). 

4. No changes in the annual regime of water demand, pumping and patterns of operational 

reservoir level were considered.  

Model parameterisation remains a source of considerable uncertainty, as in any model with many 

parameters, some degree of irreducible uncertainty of the parameter values remains, resulting in 

equifinality of model performance (Arhonditsis et al., 2008; Luo et al., 2009). Therefore, despite the 

best efforts to properly calibrate the base scenario, and however valid it may appear during the 

validation period, it has been applied here in a deterministic way, with one single set of parameters. 

The uncertainty in the projected results derived from parameter uncertainty has not been evaluated. 

A further concern exists that the model parameters may not be valid outside the range of the data 

presented to the goodness-of-fit function used during calibration and validation. Such issues may 

mean that when the model was run with decadal scale meteorological boundary conditions, the 

seasonal course of phytoplankton succession was not as expected. An example of this was that the 

model outputs of the peak concentrations of cyanobacteria were observed in autumn (April and 

May), rather than in the summer, as generally expected. 

It appears that the changes in cyanobacterial cell numbers in these scenarios were driven 

predominantly by the increase in water temperature, rather than increases in stratification. This may 

warrant further investigation, as the ecological mechanisms that favour the growth of cyanobacteria 

under conditions of stratification are well understood. For example, buoyancy regulation by gas-



 

vacuolated cyanobacteria was not applied via the model parameterisation, nor was the occurrence 

of nitrogen fixation, however the latter is unlikely to provide much advantage in this nitrogen replete 

reservoir. While the external load to the reservoir was kept relatively stable in the scenarios that 

were simulated, there was a small decrease in the concentration of reactive nitrogen, as well as a 

change in the speciation of the reactive nitrogen. As the micro group had a lower half-saturation 

coefficient for nitrogen uptake, this seems to have provided them with a slight advantage for the 

acquisition of nitrogen and resulted in the identification of the importance of nitrate and ammonium 

in the multiple linear regression analysis.  

Relatively large increases in Microcystis occurred on a percentage basis. However if these values are 

converted to cell numbers using cell carbon quota values (Reynolds, 1984), the projected worst case 

concentration did not exceed the Australian Alert Level 3 guideline value of 65,000 cell/mL for 

Microcystis aeruginosa (Newcombe et al., 2010).  
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Appendix 1 – R code for functions 

clearSkyShortWave 

clearSkyShortWave <- function(chrn = 1, lat = -35, alt = 0.05,  

                              solcon = 1361.5, 

                              AC = 0.84056972, 

                              AB = -1.22495736, 

                              K = 0.05702292){ 

  # solar constant in w/m2 

  # Contracted Nelder-Mead direct search function minimizer output 

  # See: clearSkyShortWave to Happy Valley Pyranometer.R 

  #   $par [1]  0.84056972 -1.22495736  0.05702292 

  #   $value [1] 1019.662 (sum absolute error as minimised) 

  #   $counts  function   168 

  #   $convergence [1] 0 (0 = converged) 

  if(length(chrn)!=1) stop("single time only, use vectorized function: clearSkyShortWave.v") 

  require(chron) 

  yr <- as.numeric(levels(years(chrn))) 

  mth <- as.numeric(months(chrn)) 

  dy <- as.numeric(days(chrn)) 

  tm <- 60*as.numeric(hours(chrn)) + minutes(chrn) 

   

  if(leap.year(yr)) {diy <- 366} else {diy <- 365} 

  doy <- julian(mth, dy, yr,  

                origin.= c(month = 1, day = 1, year = yr))+1 

  soldec <- 23.45*sin((360*(284+doy)/diy)*(pi/180)) # deg 

  k1 <- (-(tan(lat*(pi/180))*tan(soldec*(pi/180)))) 

  if(k1 > 1){dha <- 0} else if(k1 < 0-1){dha <- 180} else 

    dha <- acos(-(tan(lat*pi/180)* 

                    tan(soldec*pi/180)))*(180/pi) # deg sunset from S 

  daylength <- 8*dha # daylength in minutes 

  tmha <- (tm-720)*0.25 # deg 

  k2 <- 360*doy/diy # deg 

  solorbrad <- 1.0001 + 0.034221*cos(k2*pi/180) +  

    0.00128*sin(k2*pi/180) - 0.000719*cos(2*k2*pi/180)+ 

    0.000077*sin(2*k2*pi/180) 

  coszen <- (sin(soldec*pi/180)*sin(lat*pi/180)+ 

               cos(soldec*pi/180)*cos(lat*pi/180)* 

               cos(tmha*pi/180)) # deg 

  Iotm <- solcon*solorbrad*coszen*1000/60 # W/m^2 

  Iotm <- max(0,Iotm) 

   

  TR <- AC+AB*exp(-K/coszen) 

  Dir_PAR <- TR*Iotm*coszen 

  TD <- 0.2710-0.2939*TR 

  Dif_PAR <- Iotm*TD*coszen 

  CS_PAR <- Dif_PAR + Dir_PAR 

  as.numeric(CS_PAR) # W/m^2 

} 

clearSkyShortWave.v 

clearSkyShortWave.v <- Vectorize(clearSkyShortWave) 

AveSolarRadiation 

AveSolarRadiation <- function(date = '2012-01-01', lat = -35, alt = 0.05){ 

  require(chron) 

  tms <- chron(dates. = chron(rep(date, 145), format = 'y-m-d'), times. = seq(from = 0, to = 

1, by = 1/144)) 

  mean(clearSkyShortWave.v(tms, lat = lat, alt = alt), na.rm = T) 

} 

AveSolarRadiation.v 

AveSolarRadiation.v <- Vectorize(AveSolarRadiation) 
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cloudCoverFromSRdev 

cloudCoverFromSRdev <- function(obsSR,idealSR, idealScale = 1, geom = 1.01, minThreshold = 

3.5){ 

  obsSR[obsSR<idealSR*(1/minThreshold)] <- 

idealSR[obsSR<idealSR*(1/minThreshold)]*(1/minThreshold) 

 obsSR[obsSR>idealSR*idealScale] <- idealSR[obsSR>idealSR*idealScale]*idealScale 

  maxScale <- (idealSR*idealScale) - idealSR*(1/minThreshold) 

  obsSRscaled <- 1 - (geom^(obsSR - idealSR*(1/minThreshold))/(geom^maxScale)) 

  obsSRscaled 

} 

cloudCoverFromSR.MtBoldGLM 

cloudCoverFromSR.MtBoldGLM <- function(obsSR,idealSR,idealScale = 1.049597, geom = 1.012686, 

minThreshold = 4.447259){ 

  # function using parameters estimated for GLM MtBold met inputs 

  # by quantile mapping to HVR observations 

  # Leon van der Linden 

  obsSR[obsSR<idealSR*(1/minThreshold)] <- 

idealSR[obsSR<idealSR*(1/minThreshold)]*(1/minThreshold) 

  obsSR[obsSR>idealSR*idealScale] <- idealSR[obsSR>idealSR*idealScale]*idealScale 

  maxScale <- (idealSR*idealScale) - idealSR*(1/minThreshold) 

  obsSRscaled <-  

    1 - (geom^(obsSR - idealSR*(1/minThreshold))/(geom^maxScale)) 

  obsSRscaled 

} 
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