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Foreword 

This document presents a summary of the outcomes of the Goyder Institute for Water Resources project 
I.1.6 ‘The assessment of the Adelaide Plains groundwater resources’ conducted by a team of researchers of 
Flinders University and CSIRO during the project period 15 May 2013 – 31 May 2015 in close collaboration 
with the Department of Environment Water and Natural Resources (DEWNR). 
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Executive summary 

This project investigated the groundwater resources of the Adelaide Plains with the aims to (i) improve the 
quantitative characterisation of flow processes (ii) provide a new modelling platform and (iii) give an 
updated description of the groundwater flow mechanisms in the region according to the new model 
including the response to current and future stresses. 

A range of both well-established and innovative techniques were applied, including: 

• Drilling and construction of six nested groundwater observation well sites targeting the major aquifer 
units, including diamond coring of the Munno Para Clay at two sites, downhole wireline logging for the 
deepest drillhole at each site, and installation of pressure transducers and wireline piezometers 

• Sampling from the newly drilled observation wells and a selection of existing bores for a range of 
chemical analyses, including: Major ions, stable isotopes of water, stable and radioactive carbon 
isotopes, strontium isotopes and (noble) gasses (Helium, Neon, Argon, and Nitrogen) 

• Chloride mass balance (CMB) approach to quantify recharge across the Adelaide Plains and the 
western Mount Lofty Ranges 

• Differential longitudinal stream gauging of Brownhill, First, Second, Third, Fourth and Fifth Creeks to 
establish groundwater – surface water exchange fluxes 

• Steady state and transient 1D solute transport modelling of environmental isotope and 4He 
concentrations through the Munno Para Clay to determine vertical hydraulic parameters and leakage 

• Detailed study of the origin of dissolved salts and salinization mechanisms using new and existing data 
• Field and numerical modelling approaches to examine groundwater flow dynamics across fault zones 
• Estimation of transmissivity values using the tidal method and a number of analytical solutions 
• Regional groundwater flow and transport modelling 

The flux estimates obtained from field and desktop-based investigations were generally in good agreement 
with the outcomes of the regional flow model. Diffuse recharge in the Plains is an exception, being 
estimated to equate 0.8 % of rainfall by the CMB method and an order of magnitude less by the model (via 
calibration). The simplifying assumptions underlying the CMB method are numerous, but the model-based 
estimate is also prone to uncertainty. Additional work is required to refine the quantification of diffuse 
recharge in the Plains. 

A new regional groundwater flow and transport model of the Adelaide Plains has been developed. Such a 
model is viewed as the best tool available to integrate the data as it allows accounting for all 
spatiotemporal constraints implied by the regional setting.  The model domain extends from the major 
faults at the foothill of the Mount Lofty Ranges (MLR) in the south and south-east, up to 5 km offshore in 
the west and it is bounded by the Light River in the north. Compared to previous modelling efforts for the 
same area, the new platform includes the following key improvements: 

• The implementation of boundary conditions relies on stronger physical basis 
• The hydrostratigraphy was revised according to newest interpretation of geological data 
• A sensitivity analysis was performed on grid resolution, time-step resolution and initial condition for 

the transient flow model and used as a guide to decide on these structural parameters 
• A larger dataset for calibration was collated 
• Automatic calibration (as opposed to manual calibration) was achieved; however, while the initial aim 

was to use hydraulic head and chemistry data as calibration targets, compatibility issues between 
MODFLOW-NWT and MT3DMS precluded this and thus only hydraulic head data were used 

• Calibration performance was extensively assessed using relevant indicators 
• Parameters sensitivity, identifiability and uncertainty were analysed 
• The model was built using a script based approach, facilitating modifications 
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The current modelling platform is viewed as an ongoing effort towards achievement of regional-scale 
predictions of hydraulic heads, fluxes, Cl and 14C. It should not be expected to provide locally accurate 
predictions. On the basis of the SRMS (2.99 % for hydraulic heads, 28.28 % for Cl and 24.05 % for 14C), the 
current model can be deemed suitable for regional prediction of hydraulic head but not for Cl and 14C. The 
uncertainty around flux predictions is unknown and this is considered to be a major limitation. 
Furthermore, a number of issues were identified that warrant further work before the model can be 
deemed capable of providing reliable future predictions: 

• Grid resolution (1,000 m) is too coarse to allow accurate estimates of groundwater-surface water 
exchanges 

• The initial condition biases the results of the pre-development period 
• A number of parameters deviated significantly from their preferred value during calibration 
• Strong biases are observed in the weighted residuals of the calibration dataset 

The water balance and flow mechanisms were analysed on the basis of the new model. However, given the 
limitations of the model, it must be kept in mind that a large uncertainty surrounds these results. The 
description below is hence largely subject to verification and refinement in future works. 

Under pre-development conditions, the results show that both river leakage and subsurface lateral flow 
from the MLR contribute significantly to the inflows to the Tertiary aquifers. The results also suggest that a 
significant part of the flow from the MLR occurs via flow through the bedrock which subsequently feeds the 
Tertiary aquifers by upward flow in the Golden Grove Embayment. This potentially significant groundwater 
pathway does not seem to have been reported as such before. However, little data is available in deep 
aquifers to confirm or deny this modelling outcome and this warrants further investigation including new 
field work. 

The model results suggest that introduction of pumping changed this balance and caused significant 
storage depletion, which amounts to about two thirds of the inflows to the system for the year 2012. The 
low calibrated value for the specific storage of both the T1 and T2 aquifers, which are the most used 
aquifers in the Adelaide Plains, implies that increased pumping draws the head down in these aquifers. In 
response, the sedimentary formations above and below provide large amounts of water to these aquifers. 
For a business-as-usual predictive scenario, storage loss continues into the future, but at a slightly 
decreasing rate as other sources start to contribute more water. The coastal boundary switches from net 
outflow to net inflow by 2050. 

The impacts of groundwater abstraction raise a number of management questions in regard to the T1 and 
T2 aquifers. Given the relatively high groundwater salinity found in the Quaternary sediments above, and 
potentially in the T3 and T4 aquifers below where some old (> ~20,000 years), hypersaline groundwater 
was identified, the cross-formational flow induced by pumping as suggested by the model would imply 
significant risks of increase in salinity. However, the time frame over which this might become an issue for 
groundwater usage remains unknown, and there is currently limited evidence of increased salinity in the T1 
and T2 aquifers. Groundwater has also started to flow inland from the coast according to measured 
hydraulic heads and to the model results. However the location of the salt water interface in the deeper 
confined aquifers is unknown and it may be located some distance off-shore. The model results also 
suggest that river leakage increased in response to abstraction, which would indicate potential adverse 
effects on river/wetland ecosystems; further work is nevertheless warranted to confirm this result. Future 
scenario modelling suggests that the storage depletion will be ongoing and therefore that the adverse 
effects depicted above will be intensified. If this is confirmed, further development of managed aquifer 
recharge (MAR) might be required to curb the ongoing declining trend. 

Even though a number of steps were undertaken in this project to improve the understanding of 
groundwater system and the modelling platform, some key issues have been identified and call for further 
work before the model could be deemed suitable for making reliable future predictions including rigorous 
uncertainty quantification. Key recommendations for further improvement listed in this report should be 
implemented to achieve a better tool.
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1 Introduction 

The largest reserves of fresh groundwater in the Adelaide Plains are contained in the Tertiary T1 and T2 
aquifers which extend from the Eden-Burnside Fault and Para Fault in the east up to an unknown distance 
offshore in the west (Gerges 1999). These groundwater resources have been utilised since the start of the 
20th century and continue to act as a vital water resource for Adelaide’s industry, agriculture and 
horticulture, and recreational facilities. With growing pressures such as increasing groundwater demand 
and a changing climate, the longevity of these resources is a critical concern, which calls for effective 
groundwater management. In this context, a robust understanding of groundwater flow mechanisms is 
required. Furthermore, a regional groundwater modelling platform is expected to provide key support as it 
will help scientifically-informed decisions to be made. 

A modelling platform was previously developed by RPS Aquaterra (Georgiou et al. 2011) for the 
Department of Environment Water and Natural Resources (DEWNR) and has recently been used to help 
manage the groundwater resources of the Adelaide Plains. However, the model showed some significant 
contradictions with the accepted conceptualization of the groundwater flow mechanisms in the region. 
Namely, diffuse recharge largely dominated the water budget (Georgiou et al. 2011). In contrast, diffuse 
recharge across the Adelaide Plains is believed to be insignificant, with recharge being mainly the result of 
infiltration from surface water features (Miles 1952; Shepherd 1975; Gerges 1999). The model also showed 
groundwater flowing from the plains towards the hills along a significant portion of the eastern model 
boundary, especially in the North Adelaide Plains (NAP), when groundwater should globally flow from the 
hills towards the plains. Furthermore, the model did not benefit from a number of modern techniques 
available for calibration and parameter uncertainty analysis. Together these weaknesses raised concerns 
about the reliability of the model for use as a support tool for management. 

This study aims (i) to improve the quantitative characterisation of flow processes using a range of both 
well-established and innovative techniques; (ii) to provide an improved modelling platform that would 
demonstrate a greater reliability for being used as a support tool for management; and (iii) to give an 
updated description of the groundwater flow mechanisms including the response to current and future 
stresses. To achieve these goals, a combination of approaches were applied to better characterize aquifers 
and aquitards properties as well as key components of the water budget, and a significant step forward was 
taken to improve the physical basis of the groundwater model as well as its calibration. The results of the 
model were subsequently analysed in detail to increase our conceptual and quantitative understanding of 
the groundwater resources both historically and as predicted in the future. 

This summary report is based on the results of the extensive investigations as they are reported in the 
following Appendices: 

• Appendix A: Drilling report for new groundwater monitoring wells 
• Appendix B: Review of the hydrogeological properties of aquifers and aquitards 
• Appendix C: Groundwater recharge estimation – chloride mass balance approach 
• Appendix D: Groundwater – surface water exchange 
• Appendix E: Groundwater hydrochemistry 
• Appendix F: Leakage estimation across the Munno Para Clay 
• Appendix G: Seawater intrusion and sources of groundwater salinity 
• Appendix H: Coastal aquifer hydraulic parameter estimation based on tidal responses 
• Appendix I: Determination of aquitard properties through pressure response 
• Appendix J: Groundwater flow processes across fault zones 
• Appendix K: Regional groundwater modelling 

This report is organised in three parts. Part I presents the results of field and desktop investigations; this 
includes an up-to-date introduction to the hydrogeological setting of the Adelaide Plains (section 2) and 



2   |  Assessment of Adelaide Plains Groundwater Resources: Summary Report 

specific improvements made concerning the understanding and quantification of diffuse groundwater 
recharge (section 3), groundwater-surface water interaction (section 4), flow across faults (section 5) and 
inter-aquifer leakage (section 6). Part II describes key improvements made concerning the modelling 
platform (section 7), presents the capabilities and limitations of the new model (section 8) and gives model-
based estimates of water balances in pre-development, development and future periods (section 9). 
Finally, part III provides an integrated discussion of the project outcomes (section 10), a revised description 
of the groundwater flow mechanisms in the region (section 11), an overview of possible implications for 
resource management (section 12) and key recommendations (section 13). 
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2 Hydrogeological setting 

2.1 Geology 

Geologically, the Adelaide Plains is part of the St Vincent Basin which extends beneath the Gulf St Vincent 
and is bounded to the east by the Mount Lofty Ranges (Figure 1). Cainozoic sediments have been deposited 
in sub-horizontal sequences of widely ranging grain size (i.e. clay to gravel). These sedimentary sequences 
are bounded below and in the east by the Proterozoic fractured rocks of the Barossa Complex and 
Adelaidean groups. These fractured rock units form the Western Mount Lofty Ranges that are part of the 
Adelaide Geosyncline (Figure 1). The boundaries between the sedimentary sequences and the fractured 
rock are largely defined by a series of major faults. The most notable are the Eden Burnside and Para faults 
which bound the Adelaide Plain sub-basin and Golden Grove Embayment, respectively. For more detail, the 
reader is referred to Gerges (1999). 

2.2 Hydrostratigraphy 

The sedimentary aquifer system of the Adelaide Plains is made up by a complex arrangement of Tertiary 
and Quaternary age units with a total thickness of up to several hundreds of metres. In the Northern 
Adelaide Plains (NAP), the Quaternary sediments have been generalised into a series of six aquifers (Q1-
Q6), which are confined by six layers of low permeability sediments (Cb1-Cb6). Southward towards the 
Torrens River in the Central Adelaide Plains (CAP), these aquifers partly merge together and are generally 
only treated separately west of the Para fault. The Quaternary aquifers and aquitards are not as clearly 
delineated in the Golden Grove Embayment (GGE) and are generally undifferentiated. From a broad 
hydrostratigraphic perspective, all the Quaternary sediments in the Adelaide Plains are often lumped 
together into one single unit called the Hindmarsh Clay, which has the role of an aquitard (Zulfic et al. 
2008). The underlying Tertiary sediments have been classified into the first, second, third and fourth 
Tertiary aquifers (referred to as T1, T2, T3 and T4 respectively). The extent of the Tertiary sediments 
offshore is unknown, and therefore it is also unknown whether or not they outcrop at a certain distance 
offshore. 

The first Tertiary aquifer (T1) is comprised of a range of sediment types including for example the Hallett 
Cove Sandstone, Dry Creek Sand, Carisbrooke Sand, and the limestone of the Upper and Lower Port 
Willunga Formation, depending on where it is encountered (Gerges 2006; Zulfic et al. 2008). The aquifer is 
confined by overlying Quaternary sediments, except where it outcrops within the Golden Grove 
Embayment between the Hope Valley and Eden Burnside faults and just east of the Para fault (Figure 2). 
The T1 aquifer is underlain by the Munno Para Clay which acts as an aquitard for the T2 aquifer. The T2 
aquifer is comprised primarily of the Lower Port Willunga Formation limestone and occasionally the sandy 
facies of the Aldinga Member (of the Port Willunga Formation) and the Chinaman Gully Formation. The 
aquifer covers only part of the Golden Grove Embayment, but extends northward past the Gawler River 
and presumably beyond the northern limit of the Northern Adelaide Plains Prescribed Wells Area (Figure 2). 
The T2 aquifer overlays the Blanche Point Formation which consists of clay, siltstone and marl sediments. 
The latter acts as an aquitard for the underlying T3 and T4 aquifers, which are comprised of the South and 
North Maslin Sands. A synthetic presentation of the stratigraphy and hydrostratigraphy of the area is 
shown in Table 1. Cross-sections through the Central Adelaide Plains and Golden Grove Embayment are 
shown in Figure 3, while Figure 4 provides a three-dimensional overview of the main hydrostratigraphic 
units, based on the most recent interpretation of borehole data (unpublished data provided by DEWNR 
during the course of the project). 
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Figure 1 Generalised geology showing the Northern and Central Adelaide Plains, Western Mount Lofty Ranges and 
the numerical groundwater model boundary 
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Figure 2 Generalised hydrogeology showing the Quaternary, T1, T2 and Fractured Rock aquifer extents in addition 
to the currently operational State Observation Bore Network. Note that the indicated northern bounds of the 
Quaternary and T2 aquifers are the boundaries of the Prescribed Wells Area; the aquifers do in fact extend further 
north 
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Table 1 Stratigraphy and hydrostratigraphy of the Adelaide Plains (Zulfic et al. 2008) 
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a) 

 
  

b) 

 

Figure 3 Cross-sections through the Central Adelaide Plains and the Golden Grove Embayment (Gerges 1999). 
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Figure 4 Three-dimensional visualisation of the hydrostratigraphic units used in the numerical groundwater model 
(vertical exaggeration x10). One or several units are removed (starting from the shallowest) from Figure (a) through 
to Figure (g), making the deeper units visible 
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2.3 Aquifer and aquitard properties 

The most comprehensive overview of the hydraulic properties of the aquifers and aquitards is provided by 
Gerges (1999), Gerges (2006) and Hodgkin (2004). A comprehensive description of all studies to date and 
summary tables of hydraulic property values can be found in Appendix B. Additional values of the hydraulic 
conductivity and the storage coefficient of various units have been derived within the current study using 
environmental tracers (Appendix F), a tidal method (Appendix H) and vibrating wire piezometers (Appendix 
I). Table 2 provides a condensed overview of all available values and shows that the horizontal and vertical 
hydraulic conductivity (Kh and Kv, respectively) and the specific storage (Ss) typically vary by 2 to 3 orders of 
magnitude within a single aquifer or aquitard unit. These parameters are representative of aquifer 
properties across a range of spatial scales depending on the methods used to derive them. They should be 
considered with caution when upscaled to represent regional properties. For example, estimates of Kv 
based on hydraulic tests of core samples often underestimate the regional scale value of Kv, which is 
required in the numerical model, as they do not necessarily capture preferential pathways. Additionally, 
aquifer tests evaluate Kh and Ss values that are representative of the aquifer in the vicinity of a well (i.e. 
tens to hundreds of meters), while values derived using the tidal method or pressure responses in vibrating 
piezometers are representative of much larger areas. 

Table 2 Summary of vertical hydraulic conductivity (Kv), horizontal hydraulic conductivity (Kh) and specific storage 
(Ss) values determined from hydraulic tests on core samples or from in-situ pumping (after Gerges (1999), Gerges 
(2006) and Hodgkin (2004) in addition to values derived in this study). Q stands for Quaternary, T for Tertiary 

    Q AQUIFERS Q AQUITARDS T1 AQUIFER MUNNO PARA CLAY T2 AQUIFER 

Kv 
(m day-1) 

Range  5.1E-07 – 3.4E-03  1.5E-07 – 5.3E-05  
Median 

 
4.3E-05 

 
1.7E-06 

 
Mean 

 
3.1E-04 

 
6.4E-06 

 
Standard 
Deviation  

6.7E-04 
 

1.1E-05 
 

Number 
of Values   62   21   

Kh 
(m day-1) 

Range  5.6E-06 – 6.0E-03 1 – 120 1.3E-06 – 8.1E-06 1 – 45 

Median 
 

6.0E-05 3.6 2.8E-06 2.7 

Mean 1 - 10 6.3E-04 9.4 3.7E-06 6.7 

Standard 
Deviation  

1.6E-03 21.7 2.5E-06 10.1 

Number 
of Values   16 41 5 19 

Ss 
(m-1) 

Range  9.8E-05 – 6.0E-05 7.3E-05 – 1.8E-03 8.1E-06 – 1.3E-05 2.8E-05 – 1.1E-03 

Median 
 

1.6E-05 3.4E-04 1.1E-05 1.6E-04 

Mean 
 

2.6E-05 4.9E-04 1.1E-05 3.3E-04 

Standard 
Deviation  

2.1E-05 4.8E-04 2.6E-06 4.0E-04 

Number 
of Values   4 9 2 5 
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2.4 Groundwater salinity 

Salinity maps were constructed by collating all available most recent electrical conductivity measurements 
from the WaterConnect database. Only bores with aquifer information were selected, supplemented by 
bores that were less than 30 m deep to be classified for our purposes as representative of the Quaternary 
aquifers (see Appendix C for more detailed methodology and results). This resulted in over 20 000 electrical 
conductivity measurements. The distribution of groundwater salinity based on interpolation of these data 
points reveals clear spatial patterns in the shallow aquifers (Figure 5). Lower salinity groundwater is 
observed in the vicinity of the Gawler and Little Para Rivers in the north, as well as near the ephemeral 
creeks flowing into the Golden Grove embayment. Groundwater salinity in the T1 and T2 aquifers shows 
broad areas of both higher and lower salinity (Figure 6). Much of the low salinity groundwater appears to 
be roughly aligned with major surface water features (e.g. Gawler, Little Para and Torrens Rivers). 

Hypersaline groundwater has been reported in the Adelaide Plains, mainly in the T3-T4 aquifers (Gerges 
1999). Little is known about the origin of this water, and attempts during this project to collect water 
samples of it for further analyses were unsuccessful. A detailed study in the Willunga Embayment 
(Appendix G) has shown, however, that hypersaline groundwater is encountered in equivalent 
hydrostratigraphic units. The formation of this hypersaline water is most likely related to dry climatic 
conditions in the past. Based on the similarity of the ionic ratios calculated from hydrochemical 
concentration data of existing wells, it could be established  that the hypersaline groundwater in the 
Adelaide Plains and Willunga Embayment are genetically related (Figure 7). It also appears that mixtures of 
the hypersaline groundwater and freshwater occur in the T1, T2 and fractured rock aquifers at several 
locations across the Adelaide Plains. Insufficient data were available to assess the status of seawater 
intrusion to the Tertiary aquifers. 
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Figure 5 Most recent groundwater salinity (expressed in units of electrical conductivity EC) for Quaternary aquifers 
(and additionally bores whose maximum drilled depth was between 0 m and 30 m) and Fractured Rock aquifers at 
any depth 
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Figure 6 Most recent groundwater salinity (expressed in units of electrical conductivity EC) for T1 and T2 aquifers 
shows broad corridors of good quality groundwater in much of the study area in both aquifers 

 

Figure 7 Graphs showing (left) the ratio of Cl / (TIC + SO4) versus the chloride concentration and (right) the ratio of 
Na / (K + Ca + Mg) versus the chloride concentration. Ratios are based on concentrations expressed in meq L-1. 
Numbered lines represent the relationships resulting from mixing between freshwater and seawater (1), freshwater 
and hypersaline water (2) and seawater and hypersaline water (3). Black lines are based on the most saline sample 
from the Willunga area (WLG096), grey lines are based on the most saline sample from the Adelaide Plains area 
(YAT067). Coloured symbols except cyan stars represent samples from the Willunga Embayment (see appendix G 
for details), grey symbols are data points for the Adelaide Plains area obtained from the WaterConnect database. 
Cyan stars represent samples obtained in the new observation wells drilled for this study (Appendix E) 
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Figure 8 Locations of saline groundwater across the Adelaide Plains with size and shape indicating salinity (mg L-1). 
Marker symbol indicate if sample has a hydrochemical signature of hypersaline water (triangles) or unknown 
(circles). The samples span different aquifers but are mostly from the T3, T4 and FRA aquifers, and were taken 
between 1966 and 2005 
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2.5 Groundwater potentiometric surfaces 

Groundwater levels in unconfined aquifers are expected to follow a subdued form of the topography and 
are likely to be influenced by reservoir, river or creek infiltration where those surface water features are 
losing to the underlying aquifers (Winter et al. 1998). Groundwater generally flows northeast to southwest 
and from east to west in the Adelaide Plains sub-basin and Golden Grove Embayment respectively. The 
potentiometric surfaces of the confined and semi-confined aquifers are influenced by historical and current 
groundwater extraction. The pre-development potentiometric surfaces of the T1 and T2 aquifers were 
artesian suggesting the potential for upward flow into the Quaternary aquifers (Smith 1979; Gerges 2001). 
Large cones of depression have then formed in the Northern and Central Adelaide Plains as a result of 
extensive pumping in the T1 (Figure 9) and T2 (Figure 10) aquifers. Consequently, potentiometric surfaces 
are now well below sea level across large areas (Zulfic 2002; Zulfic et al. 2008; Baird 2010) and there are 
significant downward hydraulic gradients that indicate downward flow into the Tertiary aquifers from 
overlying units. Fewer groundwater bores have been drilled and maintained in the T3-4 aquifers and so less 
information is available for these aquifers. However, there is a risk that the drawdowns created in the T2 
and T1 aquifers may lead to salinization, either from the overlying Quaternary units or underlying 
hypersaline aquifer. The time frame over which this might become an issue for groundwater usage remains 
unknown. 
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Figure 9 Potentiometric surfaces for the T1 aquifer in March 2014 (courtesy of DEWNR) 
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Figure 10 Potentiometric surfaces for the T2 aquifer in March 2014 (courtesy of DEWNR) 
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2.6 Groundwater use 

Groundwater use across the Adelaide Plains primarily occurs from the T1 and T2 aquifers as their salinity 
and yields are generally better than the shallower Quaternary aquifers. Groundwater extraction has 
increased since it was first used in the early 1900s for a range of purposes but primarily for the irrigation of 
market gardens, supplementary drinking water supplies and production by beverage companies (Gerges 
1999). The total pumping across the region in 2011 was estimated to be 32 GL yr-1 according to data 
provided by Georgiou et al. (2011). 

Managed aquifer recharge (MAR) schemes have been operational in the Adelaide Plains for some decades, 
with a number of now well established schemes (e.g. Bolivar). The total current injection rate is estimated 
to be 8.5 GL yr-1 (unpublished data supplied by DEWNR). The locations of the schemes that are operational, 
in construction or under investigation are also shown in Figure 11 and amounts 23 GL yr-1. The vast majority 
of these are located in the Northern Adelaide Plains and are located across a vast area. 
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Figure 11 Current licensed groundwater allocation for all aquifers in the NAP and CAP in addition to MAR scheme 
location and status 
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3 Diffuse groundwater recharge 

3.1 Introduction 

Diffuse recharge across the Plains is believed to be insignificant, with infiltration being principally sourced 
from surface water features (Miles 1952; Shepherd 1975; Gerges 1999). Despite that, a diffuse recharge 
rate equal to 5 % of rainfall was applied in the previous model by Georgiou et al. (2011). This resulted in a 
large dominance of diffuse recharge in the water budget, thus contradicting the previous understanding of 
recharge mechanisms of the aquifers in the area. This recharge rate was based on a former model by REM 
(2006b) which included the MLR as part of the model domain. In that model, this recharge rate was applied 
based on recharge estimates for the MLR, and not for the Plains (REM 2006a). As significantly less rainfall 
occurs in the Plains than in the MLR, a recharge rate of 5 % of rainfall is likely to be an overestimation of 
diffuse recharge across the Plains. 

No estimate of diffuse recharge across the Plains was in fact found in the literature. In order to fill this gap, 
diffuse recharge was estimated in this project using the chloride mass balance (CMB) method, as described 
in detail in Appendix C. The method was also applied to quantify diffuse recharge across the Western MLR, 
but the results are summarized below for the Plains only. 

3.2 Chloride mass balance approach 

The CMB method resulted in a median recharge estimate of 3.6 mm yr-1 for the Quaternary aquifers, i.e., 
0.8 % of rainfall given the average rainfall over the model area for the period 1889–2013 (438 mm yr-1). 
Across the model domain, this represents a total recharge of 6.1 GL yr-1. 

An important limitation of the approach is that groundwater in the Quaternary aquifers can partly originate 
from the MLR via lateral flow into the Tertiary aquifers and subsequent upward flow. Historical 
groundwater flow (i.e., prior to heavy pumping) was indeed upward from the T1 aquifer into the 
Quaternary aquifers over large areas, as suggested by hydraulic heads (Gerges 1999; 2001). As 
groundwater in the MLR is generally fresher (Figure 5), corresponding groundwater samples would bias the 
result towards an overestimation of diffuse recharge. Leakage from streams into the Quaternary aquifer 
can also bias the CMB method. As stream water would generally be fresher than diffuse recharge, this can 
once more bias the result towards an overestimation. Moreover, direct surface runoff was neglected, which 
can also imply overestimation. A final cause for overestimation is the potential effect of sampling bias, as 
most wells are drilled into the freshest parts of the Quaternary aquifers, which favours the prevalence of 
higher recharge rates. Other uncertainties arise from assumptions on rainfall chloride concentration and 
rainfall amount estimates, which both were considered uniform over the area, with unknown implications 
on the result. 
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4 Groundwater-surface water interaction 

4.1 Introduction 

The western draining creeks of the Mount Lofty Ranges flow ephemerally across the Adelaide Plains. Due to 
the downward hydraulic gradients between the creeks and the underlying aquifers west of the Eden 
Burnside Fault and Para Fault, they are likely to provide a considerable source of recharge to the 
Quaternary aquifers (Miles 1952; Gerges 1999; 2006). Shepherd (1975) and Hutton (1977) estimated river 
leakage from the Little Para River to be 2.35 and 2.1 GL yr-1 respectively (using the water table fluctuation 
method and a differential stream gauging method, respectively). Teoh (2006) found loss rates of 1.37 GL yr-

1 for Brownhill Creek and suggested large losses from the Sturt River based on hydrological modelling. 
Green et al. (2010) estimated river leakage from creeks flowing across the Eden Burnside Fault using 
differential stream gauging. They found losing conditions for Brown Hill Creek, First Creek and Fifth Creek 
across the Eden Burnside Fault, with estimated volumes of 0.5, 0.3 and 0.09 GL yr-1, respectively, and 
gaining conditions for Second Creek, Third Creek and Fourth Creek. 

The current study further quantified the groundwater – surface water exchange rates for creeks flowing 
across the Eden Burnside Fault using differential stream gauging with better spatial and temporal 
resolutions (Appendix D). The results of this approach are summarized below. 

4.2 Differential stream gauging approach 

Differential stream gauging was carried out in 2014–2015 on the basis of dilution gauging. The 
measurements confirmed the previously-proposed general model of gaining conditions upthrown and 
losing conditions downthrown of the fault (Gerges 2006; Green et al. 2010; Currie et al. 2011). Brownhill 
Creek and First – Fifth Creek were all found to show losing average conditions across or past the Eden 
Burnside Fault. Spatial and temporal variability (Figure 12 and Figure 13) can explain differences with the 
results of Green et al. (2010), in particular concerning Second – Fourth Creek which were found to show 
losing conditions by Green et al. (2010). Head differences between the creeks and the underlying aquifers 
west of the Eden Burnside Fault also suggest that streams are losing near the Fault. Finally, electrical 
conductivity data also suggest clear gaining conditions upthrown of the Eden Burnside Fault and a decrease 
or an absence of groundwater discharge to streams downthrown of the Fault. 

When adjusted for riparian evapotranspiration (0.93 L s-1 km-1 – assuming 4 mm day-1 over a 20 m wide 
riparian zone), the average loss rates for Brownhill Creek and First – Fifth Creek downstream of the fault 
range from 2 to 6.1 L s-1 km-1 during baseflow conditions. This equates to approximately 1.3 GL yr-1 of river 
recharge assuming that these rates occur for 6 months of the year along 3 km of creek length westward 
from the Eden Burnside fault. It is likely that this represents a conservative value of river recharge because 
loss rates can be higher during periods of high flow (Cranswick et al. 2015). 

When the same exchange rates are extrapolated to the Sturt, Little Para and Gawler Rivers, together these 
ephemeral surface water features add approximately 4.7 GL yr-1 of leakage to the Quaternary aquifers. 
Caution must be taken when considering this regional scale estimate though, as such a rough upscaling 
necessarily introduces considerable uncertainty. Furthermore, a number of surface water features such as 
Dry Creek, Cobbler Creek, Smith Creek, Light River, lakes and farm dams were not included in this 
calculation. 
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Figure 12 Groundwater – surface water exchange rates for Brownhill creek at four separate gauging times show 
generally consistent trends of losing conditions below the fault and gaining conditions above the fault. Temporal 
variability in exchange flux is thought to be due to the changing hydraulic head gradients between the creek and 
underlying/adjacent aquifers in time. Black circles indicate gauging locations and creek flow direction is from 
southeast to northwest 

 

Figure 13 Conceptual model of groundwater flow and groundwater – surface water exchange in the vicinity of 
Brownhill Creek 
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5 Flow across the faults 

5.1 Introduction 

The widely adopted conceptual model presented by Gerges (1999) suggests that the Tertiary aquifers are 
predominantly recharged by lateral flow from the Fractured Rock aquifers to the east. Several geophysical 
studies (Leaf et al. 2012; Manning et al. 2012) have been done across the Adelaide Plains to describe the 
structure, orientation and displacement of the major fault systems but these surveys do not discuss the 
geological controls of such features on groundwater flow. A study by Green et al. (2010) investigated the 
likely mechanisms and rates of groundwater flow across the Eden Burnside Fault into the Adelaide Plains 
aquifers. Their study suggested that groundwater may flow directly across the fault from the fractured rock 
aquifer into the sedimentary aquifers through “zones of breakage”. Green et al. (2010) also hypothesised 
that an indirect pathway for groundwater from the fractured rock aquifer to the sedimentary aquifers is via 
the surface water features that traverse the fault zone and contribute via river leakage to the shallow 
sedimentary aquifers. 

 

Figure 14 Conceptual model of flow across the Eden-Burnside Fault (after Green et al. 2010) 

In the vicinity of the fault zone, groundwater levels can be much higher above the fault than they are below 
the fault. Near 5th creek for example, there is an 80 m fall in groundwater level over a distance of 353 m 
between bores ADE133 and ADE147 (Figure 15). The fact that hydraulic head gradients across the fault 
zone are much higher than those further away suggests that the fault could represent a low-permeability 
feature. As this appears to be in contradiction with previous findings, this study looked at different 
environmental tracers to investigate the regional flow dynamics across the Adelaide Plains, including flow 
across the fault. Groundwater samples were taken along three main cross-sections, as detailed in Appendix 
E and summarized below. 
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Figure 15 Hydrograph comparison for Fractured Rock aquifer monitoring bores east and west of the Eden Burnside 
fault along 5th creek. The horizontal distances between ADE133 east of the fault and ADE147 and ADE168 west of 
the fault are 353 and 697 m respectively. 

5.2 Geochemical analysis 

It was found that within the main Tertiary aquifers, the 14C activity decreases with depth and with distance 
from the Mount Lofty Ranges. This is most apparent along the central and southern transects in the T1 
aquifer and along the northern transect in the T2 aquifer. Along the northern transect, the increase in age 
with distance from the MLR indicates a mean flow velocity of 1.1 m yr-1. The 14C values could be fitted by 
assuming a constant flow velocity in the T2 aquifer, which would be consistent with a model in which most 
of the water originates from the Mount Lofty Ranges and that recharge from overlying layers does not add 
much water along the flow path (as this would lead to an increase of the flow velocity in the T2 aquifer if its 
hydraulic properties and thickness are spatially uniform). Along the southern transect, the groundwater 
flow velocity within the T1 aquifer appears to decrease west of the Para Fault (Figure 16): Between the 
Eden-Burnside Fault and the Para Fault the mean flow velocity based on 14C values is 0.6 m/year, while west 
of the Para Fault, a flow velocity of 0.2 m yr-1 is inferred. The decrease in flow velocity could be partly due 
to an increase in aquifer thickness, or it could reflect upward flow from the Tertiary into the Quaternary 
aquifer. 

It is noteworthy that some very high 14C activities (i.e. young 14C ages) were measured close to the Para 
Fault in the north and the Eden-Burnside Fault in the south. A 14C activity of 89 pmC was measured in 
MPA140 (T2), located between the Para and Alma Faults on the north transect and screened from 112 to 
125 m below ground, and a 14C activity of 83 pmC was measured in ADE138 screened from 277 to 287 m 
below ground in the fractured rock immediately west of the Eden-Burnside Fault on the central transect. 
This is interpreted as an indication for downward movement of groundwater across the faults, and suggests 
that this flow may occur at significant depth. By contrast, some of the groundwater at the base of the 
Tertiary aquifers close to the fault is relatively old (> 30,000 yr based on measured 14C activities). This likely 
indicates that this water has travelled significant distances within the MLR before reaching the Para Fault 
and that recharge occurs over a large area. If recharge were to occur over only a relatively small area, much 
less variation in groundwater age with depth would be observed. 

Based on the distribution of apparent 14C ages in the T2 aquifer along the northern transect, both the flow 
rate across the fault and the aquifer recharge rate within the MLR (where the water originates) were 
estimated using a simple cross-sectional model. Recharge rates within the Mount Lofty Ranges are thus 
calculated to be between 11 and 15 mm yr-1, which is in remarkable agreement with the CMB-based 
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estimate of 8 – 16 mm yr-1 (Appendix C). Estimated volumetric flow rates from the MLR to the plains range 
between 33 and 65 m3 yr-1 m-1. Assuming negligible lateral variation of the flow rates along Para and Eden-
Burnside faults this equates to a total flux between 2 × 106 and 4 × 106 m3 yr-1 (2 – 4 GL yr-1). 

As the apparent ages of the groundwater samples are up to 35,000 years, it is certain that recharge 
conditions have varied tremendously over this timespan due to long-term variations in rainfall (Cohen et 
al., 2011). Therefore, this estimate represents a long-term average, and thereby considerable uncertainty is 
introduced in assuming that it is representative for current conditions. The assumption that the flow rates 
are spatially constant along the faults also introduces large uncertainty when upscaling to the regional 
scale. 

 

Figure 16 Carbon-14 ages along the North, Central and South Transects (top, middle and bottom respectively) show 
increasing age towards the coast (0 km) for the T1 and T2 aquifers with dashed lines indicating the location of faults 

5.3 Comparison to the Willunga Embayment 

A recent drilling project in 2012 (as part of the NCGRT Willunga Super Science program) to investigate 
groundwater flow processes across fault zones in the Willunga Embayment provides an analogue to the 
likely groundwater flow mechanisms across major  fault systems within the Adelaide environment. 

Groundwater flow across the Willunga Fault from the fractured rock aquifer to the sedimentary aquifers 
was examined at three sites within the Willunga Embayment. Hydrogeological and hydrogeophysical 
techniques were used to site, design and construct a series of multi-level wells up to 300 m below ground 
level on either side of the Willunga fault. The observed hydraulic gradients across the fault zone were very 
significant (up to 2.5, with a head difference of 80 m over a horizontal distance of less than 30 m). 

Groundwater age dating and residence time tracers (carbon-14 and helium-4) showed that the 
groundwater within the fractured rock aquifer system was typically much younger than the groundwater 



26   |  Assessment of Adelaide Plains Groundwater Resources: Summary Report 

within the Port Willunga Formation and Maslin Sands aquifers and generally had a higher salinity. Recent 
sampling studies (unpublished data 2014) show that creeks carry water with similar hydrochemical 
characteristics as the fractured rock aquifer system across the fault, and so differentiating between 
groundwater flow and surface flow across the fault based on water chemistry is likely to be difficult. 

A three-dimensional numerical model showed that despite the fault zone acting as a dominantly barrier-
type system, approximately 1.7 to 42 % of the groundwater recharge occurring upstream of the fault zone 
to the fractured rock aquifer is likely to make its way across the fault. Using the range in measured head 
gradients across the fault and the range of fault zone hydraulic conductivities as determined by the 
modelling (1.7x10-4 to 2.7x10-5 m day-1), the annual flux along the length of fault is in the range of 2.6 to 62 
m3 y-1 m-1., i.e. very similar to what is found for the North Transect within the Adelaide Plains (33 - 65 m3 yr-

1 m-1). 
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6 Leakage through the Munno Para Clay 

6.1 Introduction 

Inter-aquifer leakage can be a very important groundwater flow process at the regional scale, but there is 
usually little information to quantify this process. In the Adelaide Plains, inter-aquifer leakage rates need to 
be known because groundwater resources are in high demand and there needs to be an understanding of 
how processes including injection and pumping in a given aquifer will affect the adjacent aquifers. If inter-
aquifer leakage is occurring at a significant rate, water resources can be over-allocated, contaminated, or 
degraded by other processes resulting from poor management. With an understanding of leakage rates, 
groundwater flow models can be calibrated to accurately represent the complex layered aquifer systems. 
This can lead to more effective resource management. 

In this study, we aimed to quantify inter-aquifer leakage in the Adelaide Plains Sub-basin using 
environmental tracers. Due to the large extraction rates from the T1 and T2 aquifers, the focus of this study 
is on the Munno Para Clay aquitard that separates these two aquifers. To constrain rates of inter-aquifer 
leakage, hydrochemical analysis was combined with solute transport modelling, as detailed in Appendix F 
and summarized below. 

6.2 Vertical hydraulic conductivity and leakage estimates 

Environmental tracers were used to determine rates of inter-aquifer leakage through the Munno Para Clay 
at two locations. During the drilling of new wells in Welland and Gillman, core samples were collected for 
the analysis of helium, chloride and stable water isotopes. The distributions of these tracers were used to 
estimate the flux across the aquitard by calibrating the velocity in solute transport modelling (Figure 17). 
Based on helium data it is estimated that the flux is less than 1 mm yr-1, from which it follows that the 
vertical hydraulic conductivity is less than 3.4×10-6 m day-1. Using this value in combination with the current 
T1-T2 hydraulic gradient map (Figure 18) a volumetric rate of upward leakage in the CAP of 366 ML yr-1 and 
downward leakage in the NAP of 1190 ML yr-1 is obtained. 

It must be emphasised, though, that these are expected to be maximum values as they were calculated 
using the upper limit of hydraulic conductivity. Significant uncertainty also arises due to limitations related 
to recent transient conditions and to the fact that the regional scale extrapolation is based on two core-
based estimates of the vertical hydraulic conductivity. 
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 (a)  (b)  

 

Figure 17 Site 13 modelled helium concentrations for (a) Scenario 1 and (b) Scenario 3 – further discussed in 
Appendix F 

 

 

Figure 18 Year 2014 hydraulic head difference map between the T2 and T1 aquifers (units of metres), constructed 
using different sources and a Bayesian Data Fusion approach (details given in Appendix F). A negative difference 
implies downward leakage and positive difference implies upwards leakage  
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7 Model setup and calibration 

A new regional groundwater flow and transport modelling platform was developed for the Adelaide Plains 
region. Such a platform is intended to provide a regional understanding of the water balance and of the 
impact of extraction/injection on the groundwater system. It is not intended to provide answers to local 
questions regarding individual wells. It could nonetheless be used to assign the boundary conditions of 
refined, local models. The model is based on MODFLOW-NWT for flow and on MT3DMS for transport 
simulations. Compared to previous modelling efforts for the same area (Georgiou et al. 2011), the new 
platform includes the following key improvements: 

• The implementation of boundary conditions such as general head boundary conditions and rivers relies 
on stronger physical basis. 

• A revision of the hydrostratigraphy. The T1 and T2 aquifers are considered continuous across Para fault 
and layers below the T2 aquifer were added down to and including the Bedrock. 

• A sensitivity analysis was performed on the grid resolution, time-step resolution and initial conditions, 
and was used as a guide to decide on these structural parameters. 

• A larger dataset for calibration was collated. 
• Automatic calibration was used to achieve optimal parameter values. 
• Calibration performance was extensively assessed using relevant indicators. 
• Parameter sensitivity, identifiability and uncertainty were analysed. 
• The model was built using a script based approach, which facilitates modifications. 

The setup of the models is described in detail in Appendix K and summarized below for the flow models. 

7.1 Model extent and hydrostratigraphy 

The model domain extends from the major faults at the foothill of the MLR in the south and east, up to 5 
km offshore in the west and it is bounded by the Light River in the north (Figure 19a). The model 
implements a simplified but comprehensive hydrostratigraphy of the area, including the main aquifers and 
aquitards down to and including the Bedrock. The Para Fault that separates the Golden Grove Embayment 
and the Adelaide Sub-Basin is explicitly represented by a line of cells extending vertically from the Blanche 
Point Formation down to and including the Bedrock. The top and bottom elevations of the layers are based 
on the hydrostratigraphy (Figure 19b). The top of the Blanche Point Formation aquitard, of the T3-T4 
aquifer and of the Bedrock are implemented in different layers upthrown and downthrown of Para Fault to 
reflect the discontinuity in elevation across the fault. Zonation coinciding with the hydrostratigraphic units 
was used for assigning hydraulic and transport properties to model cells (i.e., material properties are 
constant within each zone). The properties were based on estimates where available (Table 2) and on 
literature values otherwise. In total, the model features 10 layers for 12 hydrostratigraphic units (or zones) 
as indicated in Table 3. 
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(a) (b) 

 

 

 

 

Figure 19 (a) Regional setting indicating the model extent and (b) selected cross-sections revealing the 
hydrostratigraphy as implemented in the model. The shorthand names for the zones are defined in Table 3 

Table 3 Hydrostratigraphic units (zones of constant properties) and their abbreviation 

ABBREVIATION FULL NAME 

HClay Hindmarsh Clay aquitard 

UTSand Undifferentiated Tertiary Sand aquifer 

T1 T1 aquifer 

MPClay Munno Para Clay aquitard 

T2 T2 aquifer 

BPFmnU Blanche Point Formation upthrown of Para Fault (i.e., in the Golden Grove Embayment) 

T3T4U T3-T4 aquifer upthrown of Para Fault (i.e., in the Golden Grove Embayment) 

BRockU Bedrock upthrown of Para Fault (i.e., in the Golden Grove Embayment) 

BPFmnD Blanche Point Formation downthrown of Para Fault (i.e., in the Adelaide Sub-Basin) 

T3T4D T3-T4 aquifer downthrown of Para Fault (i.e., in the Adelaide Sub-Basin) 

BRockD Bedrock downthrown of Para Fault (i.e., in the Adelaide Sub-Basin) 

PFault Para Fault 
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7.2 Flow models (historical) 

Three historical flow models were developed for calibration but also for the analysis of flow mechanisms 
under both pre-development and development conditions. They consist of: 

1. A pre-development steady-state flow model (no pumping). 
2. A pre-development transient flow model (May 1900 – April 1950, no pumping). 
3. A development transient flow model (May 1950 – April 2013, pumping). 

The steady-state model provides the initial heads for the pre-development transient model, which in turn 
provides conditions for the development transient model. The inflows and outflows considered in these 
models consist of: 

• inflow from the MLR along the eastern/south-eastern boundary (hereafter referred to as eastern 
boundary for brevity), implemented using the general head boundary (GHB) package where the 
area of connection between boundary cells and the MLR was considered in the calculation of the 
conductance (Figure 20), and the head was based on topography; 

• discharge towards the Gulf St Vincent, implemented using the GHB package (Figure 21); 
• river-aquifer exchange along the streams and creeks within the model domain, implemented using 

the river (RIV) package and including seasonal variations (Figure 22a and Figure 22b); 
• diffuse recharge across the top of the model domain, implemented using the recharge (RCH) 

package as a proportion of rainfall, the latter being both spatially (Figure 23a) and temporally 
variable; 

• pumping (extraction/injection) in various aquifers, implemented using the well (WEL) package 
(Figure 23b and Figure 24). 

 

Figure 20 Conductance of the eastern GHB cells (3D view) when 𝑲𝑲 equals the preferred value in all units. The 
distribution of values reflects differences in the area connecting the cells to the external source (product of the cell 
thickness by the length of boundary line crossing the cell) 
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Figure 21 Conceptualization of the coastal boundary 

(a) (b) 

  

Figure 22 (a) All surface water features, considered in the winter months, and (b) perennial surface water features, 
considered in the summer months 
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(a) (b) 

 
 

Figure 23 (a) Average annual rainfall distribution (1889–2013) and (b) location of pumping wells 

 

Figure 24 Monthly net pumping rates applied to the entire model domain, T1 and T2 aquifers 
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7.3 Flow models (future) 

The aquifers of the Adelaide Plains provide a vital supply of groundwater to its many users and a suitable 
target for storage of captured stormwater following high surface flows. Efficient management of this 
resource necessitates a critical understanding of the impacts of changes to recharge and usage of the 
aquifers. Potential negative impacts to the aquifers form the focus of the scenario analyses, with emphasis 
on: 

• Changes in rainfall due to a changing climate; 
• Increased pumping by existing wells up to full allocations; and  
• Increased usage of Managed Aquifer Recharge (MAR). 

The investigation into the potential impacts described above was carried out through modification of the 
boundary conditions and stresses in the transient flow model as detailed in Table 4. The “base case” is the 
point of comparison for all other scenarios simulated. The base case used the monthly average of rainfall 
over the 10 years from 2002–2012 and applied this rainfall pattern for all future years until 2100, thus 
influencing the areal recharge as well as the eastern GHB head boundary. The pumping and MAR rates 
applied for the base case were the same as the 2012 year of the development period. These rates were 
repeated annually without change for the entire simulation. The coastal boundary remained unchanged. 

Table 4 Summary of different scenarios applied including climate change, increased groundwater pumping and 
increased managed aquifer recharge 

SCENARIO EFFECT/DRIVER IMPOSED BY CHANGE SIMULATED REFERRED TO AS 

Base case - - - Base 

Climate change Reduced rainfall to the 
AP&MLR due to emissions 

Reduced RCH and GHB RCP4.5  RCP4.5 

  Reduced RCH and GHB RCP8.5  RCP8.5 

Increased pumping Increased demand Increasing WEL pumping fluxes +10% Increased pumping 

Decreased pumping Decreased demand Decreasing WEL pumping fluxes -10% Decreased pumping 

Increased MAR Increased demand Increasing MAR schemes in WEL Increased schemes (three- 
fold increase in total 
volume of MAR) 

Increased MAR 

7.4 Calibration 

The model was calibrated using the automatic parameter estimation software PEST (Doherty 2013). 
Hydraulic head measurements were used for comparison with simulated heads of the historical 
groundwater flow models. More precisely, temporal mean values as well as deviations from the mean were 
used, as this strategy generally allows better estimation of hydraulic conductivity parameters on the one 
hand and of storage parameters on the other hand (Doherty et al. 2010; Knowling et al. 2015). Attempts 
were also made to constrain the calibration with Cl and 14C data conjointly to the transport models. 
Unfortunately, this strategy had to be abandoned because compatibility issues between MODFLOW-NWT 
and MT3DMS resulted in erratic behaviour during the PEST runs. Nevertheless, it was possible to run the 
transport models with the head-calibrated hydraulic parameters and preferred values for non-calibrated 
parameters (effective porosity and dispersivity), and to compare the outputs of these runs to the 
measurements. 

A number of parameters deviated significantly from their preferred value during calibration. While some 
values can find reasonable justification, some others seem rather unlikely or would require further 
investigation to be deemed plausible. The most concerning of these (given their importance for the 
dynamics of the main aquifers) are the horizontal hydraulic conductivity in in the T1 aquifer (0.63 m day-1 
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when the preferred value from prior estimates was 9.4 m day-1) and the specific storage in the T1 and T2 
aquifers (8.1E-07 m-1 and 3.5E-06 m-1 when the preferred value from prior estimates were 4.9E-04 m-1 and 
3.3E-04 m-1, respectively). 

The model performance statistics are given in Table 5. The SRMS for absolute hydraulic heads (2.99 %) is 
significantly smaller than in the previous modelling platform (6.77–7.79 % at given stress periods (Georgiou 
et al. 2011)). Nevertheless, a significant misfit (SE > 1) as well as a strong bias in weighted residuals can be 
observed for all the types of observations. The most likely reason for the misfit in mean hydraulic heads is 
the lack of intra-zone heterogeneity at least for hydraulic conductivity, while the most likely reason for the 
misfit in deviations from the mean head is a poor representation of inter-annual fluctuations in pumping. 
The misfit in Cl and 14C has to be related to the fact that the model was not calibrated to Cl nor 14C 
measurements, but also possibly to weaknesses in the parameterisation. 

Table 5 Model performance statistics (definitions and keys for interpretation are given in Apx Table K.4) 

STATISTIC Mean hydraulic 
heads 

Deviations from the 
mean hydraulic head 

Absolute hydraulic 
heads1 

Cl concentrations1 14C activities1 

RMS 9.11 m 3.22 m 8.46 m 929 mg L-1 27.9 pmC 

SRMS 3.23 % 3.88 % 2.94 % 18.6 % 30 % 

SE 6.09 
(5.99–6.20) 

6.11 
(6.08–6.14) 

15.35 
(15.28–15.43) 

6.45 
(6.34–6.56) 

55.9 
(49.1–65.2) 

MWR 0.32 0.00 4.09 4.04 29.9 

R 0.95 0.54 0.94 0.08 0.42 

1. Not part of the calibration dataset, but compared on the basis of the calibrated model 
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8 Water balance and its evolution 

The regional water balance and its dynamics were quantified for pre-development, development and 
future periods on the basis of the new modelling platform. The results are presented in detail in Appendix K 
and summarised below with an emphasis on the water balance for the entire area as well as for the T1 and 
T2 aquifers individually. Given the limitations of the model (see below), it must be kept in mind that a large 
uncertainty surrounds these results. The description below is hence largely subject to verification and 
refinement in future works. 

8.1 Pre-development (before 1950) 

The pre-development model period is separated into a steady-state (long term behaviour up to 1900) and a 
transient model (1900 to 1950), and represents the long term average behaviour of the groundwater 
system prior to significant groundwater abstraction. Table 6 shows the decadal (1939–1949) average 
annual fluxes between the different zones at the end of the transient pre-development model. Flow occurs 
from one zone to another or across a model boundary. Because the flow direction changes spatially, both 
inflow and outflow can occur at the same time into or out of a single zone. For example, the Hindmarsh 
Clay both receives water from streams (3.28 GL yr-1) but also discharges to them (2.49 GL yr-1). 

The model predicts that most of the inflows are from the streams (5.38 GL yr-1), followed by lateral flow 
across the eastern boundary originating from the MLR (5.11 GL yr-1) while the contribution from diffuse 
recharge is relatively small 0.66 GL yr-1). Rainfall in the MLR provides lateral recharge to all zones but most 
prevalently into the Bedrock predominantly in the Golden Grove Embayment (3.37 GL yr-1), followed by the 
T1 aquifer (0.55 GL yr-1), the Hindmarsh Clay (0.32 GL yr-1) and the T2 aquifer (0.30 GL yr-1). Groundwater 
discharge occurs through the stream network (6.41 GL yr-1) and the seafloor (5.81 GL yr-1). 

The table also illustrates the simulated flow dynamics and inter-aquifer exchanges in the Adelaide Plains. 
Groundwater flows upward from the Bedrock in the Golden Grove Embayment to the Undifferentiated 
Tertiary Sand aquifer (2.71 GL yr-1), the T3T4 aquifer (1.51 GL yr-1) and the T1 aquifer (0.74 GL yr-1). Note 
that this significant groundwater pathway does not seem to have been recognised as such before. Hence, 
this constitutes a major difference between the current results and previous understanding and this 
warrants further investigation to confirm or deny this modelling outcome. Groundwater flows from the T3 
and T4 aquifer into the Blanche Point Formation (0.84 GL yr-1), and from the Blanche Point Formation to the 
T2 aquifer (1.32 GL yr-1). There is a significant volumetric flux from the T2 aquifer to the T1 aquifer through 
the Munno Para Clay (2.88 GL yr-1), despite of its relatively low vertical hydraulic conductivity (calibrated 
value: 1.4E-05 m day-1). The T1 aquifer receives a significant amount of water from the Hindmarsh Clay 
(3.09 GL yr-1), and discharges into it by about twice as much (6.62 GL yr-1). 

The spatial pattern of the vertical flux through the top of the T1 aquifer is shown in Figure 25a for the 
steady-state pre-development model. Positive values indicate upward flow and negative values indicate 
downward flows. It can be seen that the T1 aquifer generally gains water from the Hindmarsh Clay in the 
eastern part of the model domain, and then discharges into the Hindmarsh Clay further to the west 
especially along the coastline where the discharge intensity is high. Upward flow is also evident along the 
line of the Torrens River, as further illustrated in Figure 25b which shows groundwater-surface water 
exchange rates (here positive values indicate leakage from rivers, i.e. downward flow, and negative values 
indicate discharge to streams, i.e. upward flow). 
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Table 6 Decadal average annual fluxes (GL yr-1) at the end of the transient pre-development model (1939–1949). 
Fluxes are from zones or boundaries indicated by the row names to other zones or boundaries indicated by the 
column names (except for the last row which indicates the change in storage in zones indicated by the column 
names). Values below 1x10-2 are not shown. Colours are indicative of the magnitude, with blue to red colours 
highlighting small to large fluxes respectively as indicated in the lower table 

 

 
 

(a) (b) 

  

Figure 25 (a) Vertical flux through T1 top, and (b) groundwater-surface water exchange rates, both for the steady-
state historical flow model 

Hclay UTSand T1 MPClay T2 BPFmnU T3T4U BedrockU BPFmnD T3T4D BedrockD Pfault MLR Streams Coast Recharge
Hclay 0.01 3.09 2.49 5.81
UTSand 0.13 1.39 3.92
T1 6.62 0.15 0.23 2.60 0.17 0.01 0.01
MPClay 2.88 0.24
T2 0.22 1.37 2.88 0.04 0.02
BPFmnU 0.99 0.06 0.02
T3T4U 0.75 0.68 0.15
BedrockU 2.71 0.74 0.20 1.51 0.03
BPFmnD 0.33 0.02
T3T4D 0.01 0.16
BedrockD 0.02 0.01 0.02 0.02
Pfault 0.01 0.07
MLR 0.32 0.04 0.55 0.01 0.30 0.16 0.01 3.37 0.15 0.10 0.08 0.02
Streams 3.28 2.10
Coast
Recharge 0.64 0.02
Storage change 0.54 0.20 0.24 0.01 0.08 0.01 0.02

Lower Upper
0.001 0.1

0.1 2
2 4
4 6
6 >6
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8.2 Development to present (1950–2013) 

To investigate the impact of groundwater development on the aquifer system, the period of intense 
extraction between 1950 and 2013 was simulated using a transient flow model. The initial conditions are 
provided by the transient pre-development model (1900–1950). The simulated monthly and yearly water 
balance for the whole model as well as for the T1 and T2 aquifers are shown in Figure 26 and Figure 27. 

A continual increase in pumping over time has occurred and it can be seen that this accounts for most of 
the seasonal dynamics of storage, with a lesser contribution from groundwater-surface water interaction. 
This results in a continually increasing storage loss from various units. The magnitude of the storage 
changes is much higher than that of the inflows across the model boundaries, meaning that these cannot 
supplement the water being abstracted. A slight but clear increase in inflow across the coastal boundary 
can be observed. An important internal redistribution of groundwater flow occurs across the zones, as 
revealed by the changes in flow dynamics of the T1 and T2 aquifers. 

Figure 28 shows that the reduction in storage over this period is most significant in the Hindmarsh Clay and 
the T3-T4 aquifer. The decadal average annual flux (Table 7) further illustrates how the water is 
redistributed. The majority of the 32 GL yr-1 of groundwater extraction occurs from the T1 (7.5 GL yr-1) and 
T2 (20.27 GL yr-1) aquifers. The T2 aquifer is pulling water in from above through the T1 aquifer directly 
(10.59 GL yr-1) and through the Munno Para Clay (5.67 GL yr-1). This water coming from the T1 aquifer 
ultimately originates from the Hindmarsh Clay, which loses 20.35 GL yr-1 to the T1 aquifer. At its bottom the 
T2 is pulling significant amounts of water from the Blanche Point Formation (5.22 GL yr-1). The Blanche 
Point Formation in turn is pulling water from the T3 and T4 aquifers (4.61 GL yr-1). 

It is noteworthy that even though most of the pumping occurs in the T1 and T2 aquifers, the change in 
storage for these zones is very small (Figure 26, Figure 27, and bottom row of Table 7). This is due to the 
fact that their specific storage values are low, resulting in large head decreases which drive inflow from 
surrounding zones. Storage in the Hindmarsh Clay and T3 and T4 aquifers is being depleted at an 
accelerating rate. As the groundwater extraction reduces the heads in the system, the streams turn from 
net gaining to net losing, which means the groundwater system is net gaining from the streams. The MLR 
contribution also increases as a consequence of the increasing gradient along the boundary, thus drawing 
more water into the system. Finally, the discharge to the coast is halved, and water starts flowing from the 
coast into the Hindmarsh Clay (0.40 GL yr-1). 
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Figure 26 Monthly water balance for the transient development to present model (1950–2013) for the whole model 
and for the individual T1 and T2 aquifers. For clarity, only the units exchanging significantly with the T1 and T2 
aquifers are shown 

 

Figure 27 Yearly water balance for the transient development to present model (1950–2013) for the whole model 
and for the individual T1 and T2 aquifers. For clarity, only the units exchanging significantly with the T1 and T2 
aquifers are shown 
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Figure 28 Cumulative change in storage (GL) for the development to present model (1950–2013) for units showing a 
significant storage change 

Table 7 Decadal average annual fluxes (GL yr-1) at the end of the transient development model (2002–2012). 
Reading keys are given in the caption of Table 6 

 

8.3 Future (2013–2100) 

The results of the base case show strong similarity in behaviour to that of the system at the end of the 
development period. The cumulative change in storage in Figure 29 shows that the loss of storage to the 
system is quite large (850 GL yr-1 by 2050 when summed across all zones) and that there is only a slow 
decrease in the absolute rate of change of storage over the years. The decadal flux matrix in 2050 (Table 8) 
is quite similar to that of the system over the 2002–2012 period (Table 7). Differences are partly driven by 
slightly different average pumping rates, as the pumping rates in the future scenarios are the repetition of a 
single year (2012). Higher inflows from the eastern, stream and coastal boundaries can also be observed, 
which compensate for the decrease in the storage loss rate. 

Hclay UTSand T1 MPClay T2 BPFmnU T3T4U BedrockU BPFmnD T3T4D BedrockD Pfault MLR Wells Streams Coast Recharge
Hclay 20.35 0.99 1.03 2.28
UTSand 0.14 1.51 3.79
T1 1.95 0.14 5.66 10.59 0.13 0.22 0.02 0.02 7.50
MPClay 0.94 5.67
T2 0.21 1.05 0.94 0.05 0.65 20.27
BPFmnU 1.07 0.07 0.03
T3T4U 0.95 0.75 0.13 0.72
BedrockU 2.57 0.65 0.19 2.21 0.03 0.68
BPFmnD 4.15 0.58 0.02
T3T4D 0.04 3.86
BedrockD 0.02 0.03 0.06 0.03
Pfault 0.47 0.98 0.16
MLR 0.34 0.04 0.59 0.35 0.17 3.48 0.19 0.13 0.08 0.02
Wells 0.02 0.05 0.26
Streams 4.61 2.17
Coast 0.40
Recharge 0.56 0.02
Storage change -16.76 -0.28 -0.97 -0.10 -0.13 -0.97 -0.01 -3.10 -0.06 -1.54
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Figure 29 Cumulative changes in storage (GL) for the base case scenario (2013–2100) for units showing a significant 
storage change 

Table 8 Decadal average annual fluxes (GL yr-1) during the base case future model (2040–2050). Reading keys are 
given in the caption of Table 6 

 
 

The effect of climate change when compared to the base case was seen to be insignificant in the future 
model scenarios with the differences in changes in storage of 0.2% and 0.3% for the RCP4.5 and RCP8.5 
scenarios respectively. This is due to the ratio of diffuse recharge from rainfall to the total pumping being 
small in the model (<2%) across the base case and climate changes scenarios. The differences between the 
RCP4.5 and base case scenarios in the decadal average flux matrix in 2050 are also seen to be quite small 
(Table 9). 

Yr 2050 Hclay UTSand T1 MPClay T2 BPFmnU T3T4U BedrockU BPFmnD T3T4D BedrockD Pfault MLR Wells Streams Coast Recharge
Hclay 20.90 1.04 0.64 1.47
UTSand 0.14 1.50 3.70
T1 1.47 0.13 7.41 11.04 0.45 0.21 0.02 4.94
MPClay 0.30 7.42
T2 0.21 1.02 0.30 0.06 0.63 23.96
BPFmnU 1.14 0.08 0.03
T3T4U 0.45 0.80 0.17 1.72
BedrockU 2.49 0.65 0.19 2.43 0.03 0.68
BPFmnD 4.47 0.55
T3T4D 0.03 4.13
BedrockD 0.02 0.03 0.05 0.06
Pfault 0.58 1.35 0.06
MLR 0.37 0.04 0.64 0.39 0.18 3.79 0.22 0.15 0.13 0.03
Wells 0.07 0.30
Streams 5.22 2.19
Coast 1.44
Recharge 0.62 0.02
Storage change 14.86 0.26 0.95 0.07 0.16 0.78 3.39 0.04 1.93
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Table 9 Difference between base case and RCP4.5 scenarios in the decadal (2040–2050) average annual flux matrix 
(GL yr-1). Values below 1x10-2 are not shown 

 
 

Comparison of the cumulative storage change under future scenarios for changes in pumping and increased 
MAR demonstrate that the system has intuitive dynamics (Figure 30). More explicitly, increased pumping 
further increases storage loss, whereas decreased pumping or increased MAR reduces the storage loss 
compared to the base case. In all cases, a continued decrease in storage across can be observed, with 
similar consequences on groundwater circulations as described for the development period. 

 

Figure 30 Comparison of cumulative storage change between base case, increased pumping, decreased pumping 
and increased MAR future scenarios (after the vertical dashed line which indicates the start of the year 2013) for 
units showing a significant storage change 

Yr 2050 Hclay UTSand T1 MPClay T2 BPFmnU T3T4U BedrockU BPFmnD T3T4D BedrockD Pfault MLR Wells Streams Coast Recharge
Hclay 0.06 0.00 -0.01 0.03
UTSand 0.00 0.04 -0.04
T1 -0.01 0.00 0.01 0.02 0.01 0.01 0.00 0.00
MPClay 0.00 0.01
T2 0.00 0.00 0.00 0.00 0.00 0.00
BPFmnU -0.01 0.00 0.00
T3T4U 0.00 0.00 -0.01 0.00
BedrockU -0.06 -0.02 0.00 -0.02 0.00 0.00
BPFmnD -0.01 0.00
T3T4D 0.00 0.00
BedrockD 0.00 0.00 0.00 -0.04
Pfault 0.00 0.00 0.00
MLR -0.02 0.00 -0.03 -0.02 -0.01 -0.20 -0.01 -0.01 -0.04 0.00
Wells 0.00 0.00
Streams -0.01 0.02
Coast -0.07
Recharge 0.16 0.00
Storage change -0.02 -0.04 -0.03 0.00 -0.01 -0.06 -0.01 0.00 0.00
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9 Model capabilities and limitations 

The current modelling platform is viewed as an ongoing effort towards achievement of regional-scale 
predictions of hydraulic heads, fluxes, Cl and 14C. It should not be expected to provide locally accurate 
predictions. This is reflected in the calculated RMS which has been calculated for local observations of 
hydraulic heads, Cl and 14C. On this basis, the local accuracy on modelled hydraulic heads, Cl and 14C can be 
expected to be on average on the order of 8.60 m, 1410 mg L-1 and 22 pmC, respectively. Unfortunately, 
local accuracy on flux predictions cannot be obtained in this way as no flux observations were used to 
compare with the model results. 

The RMS only reflects the comparison of model results with local measurements. In contrast, the SRMS 
gives an idea of how well the model is capable of representing the variability of a given data type at the 
scale of the model, and is therefore a better measure of the suitability of the model to serve its purpose. 
The calculated SRMS for hydraulic heads, Cl concentrations and 14C activities is 2.99 %, 28.28 % and 24.05 
%, respectively. In view of these and assuming that the variability of a given data type is dominated by 
regional-scale variability (as opposed to local-scale variability), the model could be deemed suitable for 
regional-scale prediction of hydraulic head but not for Cl and 14C. 

The suitability of the current model to predict groundwater fluxes is difficult to assess as no flux 
observations were used to compare with the model results. Parameter uncertainty analysis could give 
some hints on the uncertainty surrounding flux estimates but a reliable estimation of uncertainty cannot be 
achieved solely on this basis. Predictive uncertainty on flux estimates using the current model could be 
performed as a next step, but this still would not capture the uncertainty induced by potential 
structural/conceptual errors (such as the absence of intra-zone heterogeneity or the coarse grid 
resolution). The lack of capacity to estimate uncertainty on flux predictions is considered to be a major 
limitation of the current model. 

A number of results in this study indicate that the current model might contain significant 
structural/conceptual errors which could compromise the capacity of the model to provide reliable future 
predictions (with mostly unknown consequences which will be prediction-dependent): 

• The influence of grid resolution on the simulation results is indicative of structural error. This was 
shown to affect not only groundwater-surface water interactions but also the flow across the MLR 
boundary. 

• The initial condition was shown to influence the results as a dynamic equilibrium is not reached at the 
end of the pre-development period. This may bias the results, although this bias is insignificant for the 
development period as pumping effects largely surpass this artefact. 

• A number of parameters deviated significantly from their preferred value during calibration. While 
some values can find reasonable justification, some others seem rather unlikely or would require 
further investigation to be deemed plausible. The most concerning of these (given their importance for 
the dynamics of the main aquifers) are KH in the T1 aquifer and SS in the T1 and T2 aquifers. 

• Strong biases are observed in the weighted residuals of the calibration dataset. These generally 
indicate that both the spatial and temporal variability are underestimated by the model, and also that 
some areas have a systematic bias towards either low or high values. 

Key recommendations for future improvements of the modelling platform are listed in Appendix K. 
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Part III Synthesis 
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10 Comparison of approaches and ways forward 

10.1 Diffuse groundwater recharge 

Calibration of the regional flow model to heads suggests that the value for diffuse groundwater recharge is 
0.08 % of rainfall, i.e., an order of magnitude smaller than the value inferred from the CMB method (0.8 % 
of rainfall). There are reasons for the CMB-based estimate to be an overestimation of the diffuse recharge 
(see section 3.2). Nevertheless, the recharge parameter in the regional flow model reached its lower bound 
during calibration, meaning that it could have been smaller if the bounds were taken wider. This could be 
seen as an indication of structural model error. Namely, there are a large number of domestic (non-
licenced) wells in the Quaternary aquifers that were not included in the model. Individual pumping rates 
from these wells are relatively small, but together they were estimated to sum up to about 2 GL yr-1 for the 
sedimentary aquifers (Martin 2011). Groundwater levels would in reality be affected by these wells, and 
consequently it is possible that a small calibrated recharge stems from a compensation of the lack of 
inclusion of these wells in the model. Observed misfits between measured and simulated Cl and 14C suggest 
that diffuse recharge in the model could be too small. 

A number of the issues associated with the application of the CMB should be overcome using a regional Cl 
transport model coupled to the regional flow model and calibrating recharge not only to hydraulic head 
data, but also to Cl concentration data. In contrast with the classical CMB, the mixing of waters of different 
origins (diffuse recharge, river leakage, MLR) would be fully accounted for, as mixing is integral part of the 
transport model. While this strategy was attempted during the course of the project, it finally had to be 
abandoned due to compatibility issues between MODFLOW-NWT and MT3DMS. The approach is 
nevertheless promising and should eventually provide more reliable estimates of diffuse recharge. 

10.2 Groundwater-surface water interaction 

River leakage in the region is estimated to be at least 4.7 GL yr-1 in 2014–2015 based on a differential 
stream gauging approach. Based on the regional model calibrated to heads, river leakage is estimated to be 
6.78 GL yr-1 under development conditions (2002–2012 average), respectively. While both methodologies 
are prone to significant uncertainties, the relatively good agreement between such independent 
approaches suggests that the range of values obtained is robust. 

The direct measurements can be expected to be more accurate than the modelling results at the points in 
space and time at which they were taken. However, globally the modelling results are expected to be more 
robust as they integrate a number of regional and temporal constraints implied by: the geological and 
hydrogeological setting; ungauged surface water features; variations in stresses (climate, pumping); 
hydraulic heads; and the regional water balance. In addition, the model allows investigation of past and 
future exchange rates, whereas the direct measurements only allow characterisation of the present. 

In order to make the most of both approaches, the direct measurements should be included in the 
calibration dataset of the regional model. Given the apparent significance of groundwater-surface water 
interactions in the water balance (e.g. Table 6) this approach is worth pursuing in combination of improving 
the spatiotemporal characterisation of groundwater-surface water exchanges. Specifically, measurements 
should aim to quantify both intra and inter-annual fluctuations of the exchange rates and should target 
surface water features that are poorly documented so far such as Dry Creek, Cobbler Creek, Smith Creek, 
Light River, lakes and farm dams. The status (perennial/ephemeral), geometry (width) and elevation of 
rivers should also be better documented. 
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10.3 Flow across the faults 

The total flow across the faults (i.e., across both Para Fault and Eden-Burnside Fault) from the MLR to the 
Plains is estimated to be 2 – 4 GL yr-1 based on a simple 14C cross-sectional model along a transect of the 
NAP (section 5.2). In comparison, the total flow across the faults predicted by the steady-state historical 
regional flow model is 5.36 GL yr-1. While both methodologies are prone to significant uncertainties, the 
close agreement between such independent approaches suggests that the range of values obtained is 
robust. 

The estimate based on the simple 14C cross-sectional model is likely to be prone to major uncertainty as the 
14C values might not be representative of current flow conditions and it ignores the spatial variability of 
flow rates along the faults (see section 5.2). It might nevertheless be worth including this estimate as a 
calibration target of the regional model, in which case the flow rate could be compared at the point where 
the transect meets with the fault, thus removing the uncertainty related to the upscaling. 

A number of simplifying assumptions associated with the simple 14C cross-sectional model are removed 
when using a regional 14C transport model coupled to the regional flow model and including directly the 14C 
measurements in the calibration dataset. As already mentioned before for Cl transport, the mixing of 
waters of different origins (diffuse recharge, river leakage, MLR) would be fully accounted for. In that case, 
there would be no need for including the estimate from the simple cross-sectional model as a calibration 
target, because this information would be superseded by the use of the regional 14C transport model. This 
strategy was attempted but unfortunately, for the same reason as for Cl transport it had to be abandoned. 
The approach is nevertheless promising and should eventually provide more reliable estimates of flow 
across the faults, and more generally of velocities in the regional flow model. 

10.4 Leakage through the Munno Para Clay 

Two core-based estimates of vertical hydraulic conductivity were derived and used conjointly with a year 
2014 head-gradient map between the T1 and T2 aquifers to estimate current leakage through the Munno 
Para Clay at regional scale (section 6.2). This resulted in an upward leakage of 0.36 GL yr-1 in the CAP and a 
downward leakage of 1.19 GL yr-1 in the NAP. In contrast, an average total upward leakage of 0.94 GL yr-1 
and downward leakage of 5.67 GL yr-1 for the past 10 years was obtained using the regional flow model. 
These differences can be mostly attributed to the 4 times larger vertical hydraulic conductivity used in the 
model (1.5E-05 m day-1) than found in Appendix E (3.4E-06 m day-1). This difference in hydraulic 
conductivity could easily be explained by the fact that core-based estimates are not likely to be 
representative of the regional scale hydraulic conductivity. 
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11 Revised groundwater flow mechanisms 

The investigations conducted in this project suggest some revision of the groundwater flow mechanisms to 
the Tertiary aquifers of the Adelaide Plains. It must be kept in mind that a large uncertainty commensurate 
to the limitations of the model surrounds these conclusions. The new understanding is hence subject to 
verification and refinement in future works. 

Schematically, early investigations suggested that the inflows to the Tertiary aquifers were dominated by 
river leakage flow downward through the Quaternary aquifers (Miles, 1952; Shepherd 1975), while later 
investigations suggested that the inflows to the Tertiary aquifers were dominated by lateral flow from the 
MLR (Gerges, 1999, 2006). The results of this study suggest that both mechanisms (river leakage and lateral 
flow) contribute significantly to the inflows to the Tertiary aquifers under pre-development conditions. This 
conclusion is in line with the findings of Green et al. (2010). 

On the basis of the regional groundwater flow model calibrated to heads, under pre-development 
conditions the downward flux from the Quaternary sediments into the T1 aquifer is estimated to be 3.09 GL 
yr-1 (Table 6). Of this, a maximum of 0.32 GL yr-1 originates from the MLR via lateral flow into the 
Quaternary sediments, i.e., at least 2.77 GL yr-1 (the remaining part) originates from vertical recharge in the 
Plains (mostly from river leakage as diffuse recharge is 10 times less than river leakage). On the other hand, 
the total lateral flux from the MLR into the Plains is estimated to be 5.11 GL yr-1. Of this, 0.32 GL yr-1 flow 
into the Quaternary sediments whereas 0.55 and 0.30 GL yr-1 flow directly into the T1 and T2 aquifers, 
respectively. The remaining part is principally lateral flow into the Bedrock in the Golden Grove Embayment 
(3.37 GL yr-1) and this subsequently feeds the Tertiary aquifers by upward flow in that area. The latter 
groundwater pathway is significant and does not seem to have been recognised as such before. Hence, this 
constitutes a major difference between the current results and previous understanding and this warrants 
further investigation to confirm or deny this modelling outcome, including new data analysis and field work 
as little data is available in the deep aquifers of the Golden Grove Embayment. 

The simulation results show clear changes between the past, present, and future conditions of the 
groundwater system (Figure 31). Prior to pumping, the inflows and outflows to the system were well 
balanced. Introduction of pumping changed this balance and caused significant storage depletion, which 
amounts to 64 % of the inflows to the system for the year 2012. The low specific storage of both the T1 and 
T2 aquifers implies that increased pumping draws the head down in these aquifers without the capacity to 
release large quantities of water. This induces large head gradients between the T1 and T2 aquifers and 
units above and below. In response, the Quaternary sediments provide the largest amounts of water via 
release of storage. Water also originates from the underlying T3 and T4 aquifers. In a business-as-usual 
predictive scenario, storage loss continues into the future, but at a decreasing rate as other sources start to 
contribute more water. Stream infiltration and inflow from the MLR contribute slightly more to the system, 
but the largest effect is from the flow across the coastal boundary, which switches from net outflow to net 
inflow. 
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Figure 31 Decadal average water balance components as a percentage of the total balance for pre-development (in 
1950), development (in 2012) and future (base-case in 2050) periods. Red coloured pieces of the pie indicate flow 
out of the system, blue pieces indicate flow into the system, and green indicates storage changes (either gain or 
loss) 

The conceptual model of the Adelaide Plains groundwater system under current conditions is depicted 
graphically in Figure 32. This figure reflects the current understanding which is based on previous studies 
complemented by the results of the present studies that have improved and further refined the existing 
model. The system is currently in a stressed state, mainly as a result of pumping from the Tertiary aquifers. 
This has led to a strong decline of groundwater levels over the past decades and extensive cones of 
depression have formed around the main areas of pumping (Figure 9 and Figure 10). In large parts of the 
system, flow directions have been reversed compared to the pre-development conditions, which is 
supported in this study by the analysis of 4He in the pore water of the Munno-Para aquitard as well as by 
the model results. 
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Figure 32 Hydrogeological conceptual model of the Adelaide Plains groundwater resources 
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12 Implications for groundwater resources 
management 

The impacts of groundwater abstraction raise a number of key management questions. The observed 
widespread decline of potentiometric levels indicates that total pumping is presently occurring at a rate 
that largely exceeds natural inflows. The modelling results suggest that the total inflow to the aquifers is no 
more than in the order of 10 – 15 GL yr-1. Data on groundwater pumping provided by Georgiou et al. (2011) 
indicate a total annual extraction in the order of 30 GL yr-1 in recent years, suggesting that pumping 
exceeds the natural inflows by a factor 2 to 3. According to the model results, this implies a strong decline 
in storage in the groundwater system and increased cross-formational flow. 

The regional groundwater flow model has been used to study how the groundwater flow circulations are 
modified in response to pumping. Despite the fact that abstraction is largest from the T1 and T2 aquifers, 
the model results suggest that most of the storage depletion occurs in the Hindmarsh Clay (the name of the 
zone in the model lumping together the Quaternary sediments). Given the relatively high groundwater 
salinity found in the Quaternary sediments, this implies significant risks of increase in salinity in the Tertiary 
aquifers. However, the time frame over which this might become an issue for groundwater usage remains 
unknown, and there is currently limited evidence of increased salinity in the upper Tertiary aquifer in 
response to this. 

The model results further suggest that more groundwater is flowing vertically upward from the Bedrock 
and the T3 and T4 aquifers into the overlying Tertiary aquifers to compensate the loss of groundwater by 
pumping. However, this needs to be verified with targeted monitoring of the Tertiary aquifers and in 
relation to the deeper units, including examination of any observational evidence of upward flow of saline 
water from the T3/T4 aquifers into the overlying Tertiary aquifers. A detailed study of the seawater 
interface in the Willunga Embayment showed that besides seawater, old (> ~20,000 years) hypersaline 
groundwater exists. Such hypersaline groundwater was also identified in observation wells across the 
Adelaide Plains, in particular in the T3/T4 and fractured rock aquifers. The upward flow from these units 
towards the T1 and T2 suggests that salinization from deep-seated sources might become more prevalent. 
This risk cannot be fully assessed until the distribution of the hypersaline groundwater is better 
understood. 

Groundwater seems to have started to flow inland from the coast, which is apparent from the measured 
hydraulic heads (Figure 9 and Figure 10) and is suggested by the results of the model. However the location 
of the salt water interface in the deeper confined aquifers is unknown and it may be located some distance 
off-shore. The adequacy of the current monitoring network to provide early warning of any intrusion of salt 
water along the coast should be assessed, and further modelling including testing different coastal 
boundary conceptualisations appears necessary. 

In response to the abstraction, river leakage has also increased substantially according to the model. While 
further work is warranted to confirm this result, this suggests the need for managing groundwater and 
surface water conjunctively, and also points towards potential adverse effects of pumping on river/wetland 
ecosystems. 

The modelling of future scenarios suggests that the storage depletion will be ongoing and therefore that 
the adverse effects depicted above will be intensified. If this result is confirmed, further development of 
managed aquifer recharge (MAR) might be required to curb the ongoing declining trend if the present day 
pumping allocations are to be maintained. 
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13 Recommendations 

The regional groundwater flow and transport modelling platform is believed to be the best tool possible to 
integrate the data as it allows accounting for all constraints implied by the regional setting. It is also the 
only tool available to investigate future scenarios on a physical basis. However, even though a number of 
steps were undertaken in this project to improve the model, some key issues have been identified and call 
for further work before the model could be deemed suitable for making reliable future predictions 
including rigorous uncertainty quantification. The key recommendations for further improvement listed in 
Appendix K point towards a number of data gaps and modelling tasks. It is recommended that these steps 
be undertaken in order to achieve a better tool to understand the Adelaide Plains groundwater system and 
to inform decision makers regarding water management questions. 
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