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Executive summary 

The challenge 

The Northern Adelaide Plains (NAP) has significant potential for sustainable economic development from the 

expansion of irrigated agriculture. In 2016, the Goyder Institute for Water Research instigated a stocktake of 

the water resources, with consideration of both quantity and quality, on the NAP that could be made 

available for economic development in the region in the short term. 

One of the major constraints to expansion of horticulture in the NAP has been an available water supply. The 

expansion of the use of reclaimed water in the region will aim to address this limitation. In order to monitor 

and manage the expansion of agriculture in the NAP, it is important to have a good understanding of the 

baseline status of the receiving environment and constraints and vulnerabilities associated with the use of 

reclaimed water (including but not limited to salinity, sodicity and soil boron), and the other water sources 

identified in the NAP Water Stocktake. 

Determining which irrigation options to implement is complicated by a number of factors, including: (i) a 

large number of potential options in relation to agricultural production, such as protected cropping, 

broadacre agriculture and intensive livestock and the water supply options that are available and best suited 

to these, (ii) potentially competing uses for available land and (iii) potential environmental and social impacts.  

In addition, there are a number of gaps in underlying knowledge that need to be filled in order to enable 

decisions to be made in an informed manner including: (i) current soil attributes to assist model predictions 

of the impacts of using recycled water and develop guidelines for the sustainable use of recycled water, (ii) 

the impact of water from different sources / of different quality on soil biochemical process interactions, (iii) 

the fate of nutrients from different sources on receiving waters and effects from variable irrigation water 

quality on the long-term sustainability of the land’s ability to grow crops, (iv) the amount of water of different 

quality that is able to be supplied at different times of the year, v) the depth to shallow (often saline) 

groundwater which would be affected by increased recharge from expanded irrigation, and vi) the extent of 

resilient and also vulnerable areas where further irrigation expansion could proceed subject to additional 

works and management practices being assured (such as interception and removal of shallow, saline 

groundwater). 

To assist with assessing various policy and development options in a holistic, transparent and defensible 

manner, this project focused on the Greater Study Area of the Goyder Institute for Water Research’s 

Northern Adelaide Plains Water Stocktake, but has broader relevance to irrigation development along the 

Northern Adelaide Corridor. 

The overall aims of the project were to (i) fill a number of gaps in scientific knowledge related to the impact 

of the application of water from different sources on long-term soil suitability for different types of crops, 

long-term impacts on soil quality, and the availability of water of different quality at different times of the 

year, and (ii) integrate this knowledge in a set of guidelines to answer a number of key end-user defined 

questions. The project was structured into five distinct tasks. This report documents the main findings from 

Task 2: Modelling nutrient and chemical fate, including salinity/sodicity risk, as the basis for identifying 

longevity of recycled water utilisation and mitigation strategies under current and future climate. 
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Task 2 was designed to enable the answering of the critical management questions “what water is sustainable 

to use where, for what crop, and for how long?” The identification of high risk areas for potential loss of soil 

quality will be available for informing monitoring programs and the implementation of mitigation strategies 

to minimise adverse environmental outcomes that may arise from the expansion of horticultural activities in 

the area. Also, areas with poor quality soils may be prioritised for glasshouse expansion. 

This task addressed one of the key research challenges identified in the Goyder Institute for Water Research 

Strategic Research Plan 2015-2019, i.e. to undertake in-depth analysis of coupled processes of variably-

saturated water flow, plant water uptake and coupled transport of multiple major ions in soils irrigated with 

irrigation water featuring different water qualities. By coupling major ion soil chemistry to unsaturated flow 

and plant water uptake, and by explicitly incorporating effects of salt concentrations on soil hydraulic 

properties and on root water uptake (the so‐called salinity stress), the task has incorporated critical soil 

processes required for salinity risk assessment associated with irrigation water. In doing so, this task 

addressed several of the knowledge gaps that are pivotal for an improved salinity/sodicity risk assessment. 

This task therefore informs optimisation of irrigation practices that will yield minimal long-term effects on 

soil productivity. 

The study  

The major ion chemistry module UNSATCHEM, available in the HYDRUS-1D simulator, was used as the 

primary tool for assessing different water quality scenarios for the current soil status to inform longevity of 

utilisation of water from a range of sources and of different qualities, including reclaimed water. Simulations 

with different water qualities provided detailed results regarding soil quality, i.e. pH, salinity (EC), sodium 

adsorption ratio (SAR), and exchangeable sodium percentage (ESP). This modelling allowed an assessment of 

the sustainability of the irrigated soils using water with different qualities and allowed the testing of 

mitigation strategies such as gypsum amendments to prevent soil degradation. The modelling results can be 

used to inform soil monitoring programs and inform the long-term planning for the development of the 

region. This task builds upon data collected within Task 1 of the project and, by understanding the baseline 

soil status, provides a cost effective way to optimise the quality of irrigation water used in the region to 

ensure the soils are managed sustainably.  

The project used best-available data on soil hydrology and chemistry, historic and future climate parameters, 

water quality of potential irrigation water, and greenhouse horticulture production systems from the NAP 

area as a basis for the scenario modelling. Key crops considered in the simulations include perennial 

horticultural crops (represented by almonds and pistachios), viticulture, annual horticultural crops 

(represented by potatoes, onions, and carrots), and pasture crops. Greenhouse crops included capsicum, 

cucumber, eggplant, and tomato. Key soils included in the scenarios are calcareous, hard red brown, sand 

over clay and deep uniform to gradational soils. Simulations of the soil water balance and soil chemical 

balance were undertaken from 1970-2017 (historic climate) and from 2018-2050 (future climate). The 

intermediate-emission Representative Concentration Pathway RCP4.5A is used as a single climate future 

rather than a range of futures, which limits the number of modelling scenarios to a practical level. As a result, 

the simulations present one possible outcome. However, the tools developed through the project are 

available to further test additional future climate scenarios.  

By considering these two time-series, the effect of one potential future climate on soil water and soil 

chemistry has been assessed. The reference water source considered was recycled water. All together a total 
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of 84 scenarios were evaluated. The suitability to grow other crops on the NAP area can be readily inferred 

from parameters determining water stress and salinity stress and comparing those between simulated crops 

and other crops of interest. 

For a subset of the crops (i.e. potato, wine grapes and almonds), the effect of soil amendment by gypsum 

application was numerically evaluated. This soil management option was combined with applying higher 

leaching fractions to leach accumulated salts from the soil profile. A total of 77 additional scenarios were 

conducted to study the impact of various management options for different NAP soils. Water sources with 

different salinity were also tested; water qualities ranged from good quality low-salinity (175 mg/L) water, 

blending water (688 mg/L), to recycled water (1200 mg/L). The effect of cycles of alternatively low-salinity 

and recycled water was also tested, either using monthly or half yearly cycles.  

The project also assessed the effects of long-term irrigation on salt build-up in soil under greenhouse 

conditions. Blended water (recycled water and harvested rainwater) was used to irrigate soil grown 

greenhouse vegetables (tomato, cucumber, capsicum, and eggplant). Simulations provided insight into the 

development of irrigation induced chemical transformations in the soils and which management options 

provided for a sustainable use of irrigation water. The management scenarios tested included four leaching 

fractions and four annual levels of gypsum application. 

Key model outputs such as depth profiles and time series of salinity and sodicity indicators (SAR, ESP) were 

produced for each soil/crop combination and for each water resource considered. These outputs were 

compared against threshold values for individual crops and for soils as a whole. In this way the impact of 

salinity on crop yield can be estimated. Two-dimensional simulations with HYDRUS (2D/3D) were undertaken 

to optimise the riparian zone widths to control lateral solute migration from irrigated fields to streams. The 

project further evaluated potential effects of additional boron inputs to the soil profile through the irrigation 

water; this involved simulations accounting for adsorption-desorption processes and rates of mineral 

dissolution. Finally, potential impacts of climate change related extreme temperatures, dry spells, and milder 

winters on crops in the NAP were assessed.  

Conclusion and recommendations 

This task has delivered an unprecedented set of new site-specific soil hydraulic and chemical parameters to 

undertake quantitative evaluations of potential impacts of long-term irrigation on soil and plant health. 

Typical parameters include unsaturated soil hydraulic properties of the key soils at various depths in the soil 

profile, and interpreted chemical parameters that control the complex interactions between major cations 

in soil solution (sodium, potassium, calcium, magnesium) and the soil solid phase (e.g. clay particles). A new 

boron sorption model has been developed to develop better insights into the fate of boron in irrigated soils. 

In addition to new soil parameters for quantitative modelling, the project has also delivered a novel capability 

of the HYDRUS-1D simulator in the form of a gypsum amendment module that allows for the addition, and 

subsequent dissolution, of an annual amount of solid gypsum to the soil profile. Despite these efforts to use 

best available information for predictive modelling, the predictions are subject to uncertainties and should 

therefore be taken as indicative, not absolute futures.  

To determine crop water requirements into the future (2018-2050), the dual crop coefficient methodology 

was implemented using projected climate data that incorporated effects of climate variability and change. 
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Results showed that irrigation requirements for all crops tested will most likely increase compared to the 

values calculated for the historic climate (1970-2017).  

Predicted increase in crop water requirements are as follows (range indicates variation between soil types): 

• Pistachios: +3.0 to 4.5 %  

• Wine grapes: +3.5 to 5.8 % 

• Almonds: + 6.0 to 7.4 % 

• Carrots: +6.2 to 7.4 %  

• Pasture: +7.0 to 8.4 % 

• Onions: +9.2 to 10.3 % 

• Potatoes: +8.8 to 11.0 % 

The increase in crop water requirement is dependent on soil type. The ranking of soils from most to least 

sensitive is as follows: sand over clay > hard red brown > calcareous > deep uniform to gradational. 

This task has further delivered information on how to respond to different management and climate 

scenarios, and identified several mitigation strategies. The main results from the scenario analysis with 

recycled water are summarised as follows: 

• After 32 years of irrigation (at t = 2050 y), soil pH was nearly identical for all soil depths across all 

soils. Overall soil pH was relatively insensitive to the applied water. 

• The final (at year 2050) soil profile salinity (ECSW) across all soils and crops ranged from 2.9 dS/m at 

the soil surface to 4.0-9.5 dS/m at 2 m depth. The depth distribution of ECSW was different for 

different crops. 

• Potential yield of salt sensitive crops such as annual horticulture and almonds was estimated to be 

reduced by 4-32% due to the increased soil salinity. 

• An increase in the SAR across all soils from average initial (year 2018) values (0.8-3.6) to final values 

in the range 12.1- 19.4; SAR values at the bottom of the soil profile were about twice as large as 

values at the soil surface. 

• After 32 years of irrigation, the average soil ESP increased from 21 to 43.7% for calcareous soil, 

from 29.4 to 51.0% for hard red brown soil, from 9 to 28.4% for sand over clay soil, and from 24.5 

to 35.0% for deep uniform to gradational soil. Different crops developed different ESP depth 

distributions. 

• High SAR and ESP build up in the soils could adversely affect soil structural stability and water 

movement in the soil, which can lead to water logging below or in the root zone, and which can 

severely impact optimal crop production. 

• New relationships between soil solution SAR and ESP for each soil were developed from which 

threshold SAR values can be derived that exceed threshold ESP values. In Australia, a soil is defined 

sodic when the ESP > 6%. These relationships revealed that a SAR of 4, 4, 6 and 3 for calcareous, 

hard red brown, sand over clay and deep uniform to gradational soils, respectively, would be able 
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to develop a critical ESP (>6%) which can lead to adverse impacts such as poor soil structure. 

 

Table 1. Reduction in the potential yield (%) of different crops with profile average salinity build up in different soils 

(Calcareous (Cal), Hard red brown (HRB), Sand over clay (SoC), Deep uniform to gradational (DuG)) in relation to 

recycled water use. Coloured cells indicate the risk level to reduction in crop yield: green = low risk; amber = medium 

risk; red = high risk.  

SOIL REDUCTION IN POTENTIAL YIELD (%) FOR VARIOUS CROPS 

ALMOND WINE 
GRAPE 

PISTA-
CHIOS 

CARROT ONION POTATO BRASSICAS PASTURE 

CLOVER RYE 

Cal 17.6 1.7 0.0 27.1 30.5 34.5 11.0 19.2 0.0 

HrB 11.2 0.0 0.0 23.1 27.5 25.1 8.3 13.9 0.0 

SoC 15.1 0.0 0.0 27.7 28.5 0.6 11.4 16.1 0.0 

DuG 17.9 0.0 0.0 27.4 30.7 8.0 11.2 20.1 0.0 

 

The increased soil salinity and sodicity can be mitigated by adopting a combination of management options: 

soil amendments with gypsum, increased leaching rates, and use of low-salinity irrigation water 

(continuously or as part of a cyclic approach).  

In sandy soils (sand over clay), the use of less saline irrigation water (low-salinity sources, blended) and 

adoption of cyclic water use decreased the salinity and sodicity to levels close to or below the thresholds. 

The difference in impacts between the different water sources was relatively small; the use of blended water 

was equally successful in reducing SAR and ESP as use of monthly or half-yearly cycles. While low-salinity 

water produced optimal growing conditions, differences with blended water and cyclic irrigation was small. 

Adoption of an annual dose of gypsum at 4.3 t/ha combined with a 20% leaching fraction was found suitable 

to manage the salinity and sodicity hazards associated with the use of recycled water at all depths, except 

for the shallow depth (0-15 cm). At the shallow depth, SAR and ESP were fluctuating around the threshold 

value, mainly driven by year to year variability in climate.  

Calcareous soils contained high amounts of calcium carbonate in variable soluble forms as well as in variable 

shapes and sizes of calcrete rocks. Long-term use of recycled water on calcareous soils combined with annual 

gypsum amendment of 8.6 t/ha and a leaching fraction of at least 20% yielded EC values similar to the 

threshold value for wine grapes at the 0-15 cm soil depth. The sodicity indicators SAR and ESP at the same 

depth were similar or slightly larger than the soil threshold, respectively. At intermediate soil depth (30-60 

cm), the same irrigation conditions resulted in acceptable EC and SAR values; ESP was about two times the 

soil threshold value. At the 60-90 cm soil depth, the EC and SAR values were marginally higher than the wine 

grape threshold; more salt tolerant crops such as pistachios could be grown very well under such conditions. 

The relatively high ESP at this deeper depth could cause water logging, especially if high leaching fractions 

are used.  

For hard red brown soils, all water qualities tested gave above-threshold EC values at all soil depths (based 

on almonds), even when gypsum was added at an annual rate of 8.6 t/ha. Only the low-salinity water was 

able to keep EC below or at the threshold level. SAR values were acceptable at the shallow and intermediate 

soil depth for all water qualities tested, except for the recycled water. At the 60-90 cm depth, only the low-

salinity water was able to keep SAR values below the soil threshold. The ESP exceeds the threshold value for 
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all water qualities at all depths, except for the low-salinity water. The combination of annual gypsum 

amendment at 8.6 t/ha and a leaching fraction of 20% was not able to keep the ESP below threshold when 

recycled water was used. With blended water, gypsum and 20% leaching fraction, both EC and SAR were 

acceptable for the 0-15 and 30-60 cm soil depth.  

Blended water (recycled water and harvested rainwater) was used to irrigate soil grown greenhouse 

vegetables (tomato, cucumber, capsicum, and eggplant). Results showed that temperature based irrigation 

scheduling for greenhouse crops (with a zero leaching fraction) could lead to the emergence of salinity and 

sodicity hazards in the soil. Analysis of further management scenarios suggested that a 15-20% higher 

irrigation amount coupled with an annual gypsum application of 10 meq/kg soil (1.7 t/ha), kept the salinity 

and sodicity (SAR, ESP) below critical thresholds.  This scenario created a favourable soil environment for 

long-term sustainable vegetable production under glasshouse condition. 

The results suggest that irrigation induced salinity and sodicity will continue to impact agriculture in arid and 

semi-arid areas for the foreseeable future if adequate mitigation options are not put in place. The sustainable 

use of recycled water for irrigation requires designing and implementing effective farm-scale and regional-

scale solutions. Therefore, a comprehensive strategy for a long-term monitoring, auditing and reporting 

framework could help streamline the use of recycled water for irrigation. 

Based on two-dimensional simulations with HYDRUS (2D/3D), riparian zone widths to control lateral solute 

migration from irrigated fields to streams were optimised. Simulations showed the likely average annual 

water flow from almond and annual horticulture irrigated area to the stream was nearly twice as much than 

under wine grapes. The study showed that buffer widths of 20, 60, and 40 m for irrigated wine grapes, 

almond, and annual horticulture, respectively, are needed to restrict the migration of salts to the stream.  

A sensitivity analysis of boron leaching involved several key sources of variability (and thus uncertainty) and 

demonstrated that the leaching model is least sensitive to the natural soil variability (sorbed boron 

concentration and sorption models) and most sensitive to the variation in boron concentration in the 

irrigation water. Importantly, the higher the initial boron concentration (i.e., prior to adding boron containing 

irrigation water) in the pore water and on the solid phases, the smaller the relative effect on the long-term 

boron concentrations. This means that soils with an already high boron concentration will be at a lesser risk 

relative to soils with a much lower boron concentration. 

An analysis of the chosen warming scenario showed that the NAP region will be subjected to greater daily 

temperature indices and frequency of hot days relative to historic climate. There will be also a higher 

frequency for dry days (with rainfall less than 1 mm) and dry spells compared with historic data. The NAP 

region, following global climate change predictions, will be subjected to milder winters based on smaller 

frequencies of frost and chill days. The following consequences are anticipated for the crops in the NAP 

region, as the result of these climatic shifts, without mitigation and adaption of management practices: 

• Potatoes will likely see a yield decrease and a higher risk to being invaded by pests. 

• The growth and yield in carrots may be stimulated due to increased frequency of hot and dry days. 

Nevertheless, extreme heat events may reduce the quality of carrots and mid-season drought 

stress can depress the yield in carrots. 

• Warmer climate may reduce the duration of crop growth, yield, and seed production for onions; 

low rainfall conditions can reduce the risk of infection by pests.  
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• The projected drought and extremely hot weather in the NAP region is expected to negatively 

impact vines, which may result in poor budburst, leaf loss, bunch damage, and consequently low 

yield and production or even crop loss.  

• For almonds and pistachios, it is expected that their yield and production may be impacted by 

drought in the NAP region if not properly managed. While the current NAP climate hardly 

accommodates chill requirements for these fruits, the projected climate shows there would be 

some years that this requirement cannot be met at all. 

• As the NAP region will likely be subjected to an increased number of hot days, a decline in pasture 

production is anticipated for this region, unless irrigation amounts are increased. 
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Abbreviations 
Abbreviation Full name 

AHD Australian Height Datum 

ASR Aquifer storage and recovery 

ASRIS Australian Soil Resource Information System 

BD Bulk density 

BOM Bureau of Meteorology 

CAL Calcareous soil 

CDF Cumulative distribution function 

CSIRO Commonwealth Scientific and Industrial Research Organisation 

CV Coefficient of variation 

DAFF Dissolved Air Flotation and Filtration 

DEWNR Department of Environment, Water and Natural Resources, South 

Australia 

DCC Dual crop coefficient 

DUG Deep uniform to gradational soil 

EC Electrical conductivity 

EV Estimated value 

GCM Global Climate Model 

GFDL-ESM Geophysical Fluid Dynamics Laboratory-Earth System Model 

GIS Geographical Information System 

IR Irrigation requirement 

HRB Hard red brown soil 

MAR Managed aquifer recharge 

MAE Mean absolute error 

ME Mean error 

MIR Mid-infrared 

MWHC Mean water holding capacity 

NAP Northern Adelaide Plains 

OM Organic matter 

PTF Pedotransfer function 

RAW Readily available water 

RW Recycled water 

SD Standard deviation 

SOC Sand over clay soil 
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Symbols 
Parameter Definition 

α Air entry value of the van Genuchten water retention curve (cm-1) 

CEC Cation exchange capacity: Total capacity of a soil to hold exchangeable 

cations (mmolc kg-1); typically the sum of [Na+], [K+], [Ca2+] and [Mg2+] 

ESP  Exchangeable sodium percentage: 100×[Na+]/CEC, where [Na+] is sodium 

concentration (mmolc kg-1) 

ECSW Electrical conductivity of the soil pore-water at measured or predicted 

maximum field water content (dS/m) 

ECSe Electrical conductivity of the soil saturation extract (dS/m) 

ECW Electrical conductivity of the irrigation water (dS/m) 

ES Soil evaporation (mm day-1) 

ET0 Reference crop evapotranspiration (mm day-1) 

ETC Crop evapotranspiration under standard conditions (mm day-1) 

KC  Crop coefficient (-) 

KCB Basal crop coefficient (-) 

Ke Soil evaporation coefficient (-) 

KS Saturated hydraulic conductivity (m/day) 

l Pore-connectivity parameter (-) 

LF Leaching fraction (-) 

n Shape parameter of the van Genuchten water retention curve (-) 

SAR Sodium adsorption ratio: [Na+/(Ca2++Mg2+)0.5] (mmol0.5 l-0.5) 

TP Crop transpiration (mm yr-1) 

r Residual water content (cm3 cm-3) 

s Saturated water content (cm3 cm-3) 
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1 Introduction 
Irrigation, regardless of water source, intrinsically carries a risk to soils and landscapes. This is the 

result of an inevitable modification in the water, salt and nutrient balance that affect processes 

including deep drainage, runoff, and groundwater recharge. The timeframe in which the risk can be 

expressed is governed by fundamental landscape attributes including landform, the depth of the 

variably-saturated or vadose zone and soil properties, and management considerations (water 

application rate and crop water use). For example, some irrigation waters are typically high in sodium 

but relatively low in calcium and magnesium, and therefore yield a high sodium absorption ratio (SAR). 

If such water is used for irrigation, it leads to sodium displacing calcium and magnesium in the soil and 

salt accumulation in the soil profile. This will cause a decrease in the ability of the soil to form stable 

aggregates and results in a loss of soil structure. This in turn will result in a decrease in infiltration 

leading to problems with crop production. Therefore, prior to any use of variable quality water for 

irrigation purposes, an in‐depth assessment has to be undertaken of the long-term effects of dissolved 

ions on soil and plant productivity to ensure irrigation is managed sustainably. 

The overall aims of the project were to (i) fill a number of gaps in scientific knowledge related to the 

impact of the application of water from different sources on long-term soil suitability for different 

types of crops, long-term impacts on soil quality, and the availability of water of different quality at 

different times of the year, and (ii) integrate this knowledge in a set of guidelines to answer a number 

of key end-user defined questions. The project was structured into five distinct tasks. This report 

documents the main findings from Task 2: Modelling nutrient and chemical fate to support the long-

term sustainability of the use of recycled water. 

This task addressed one of the key research challenges identified in the Goyder Institute for Water 

Research Strategic Research Plan 2015-2019, i.e. to undertake in-depth analysis of coupled processes 

of variably-saturated water flow, plant water uptake and coupled transport of multiple major ions in 

soils irrigated with irrigation water featuring different water qualities. This is consistent with Biggs et 

al. (2012), who identified the description of the unsaturated zone as the key knowledge and data gap 

when conducting salinity risk assessments. By coupling major ion soil chemistry to unsaturated flow 

and plant water uptake, and by explicitly incorporating effects of salt concentrations on soil hydraulic 

properties and on root water uptake (the so‐called salinity stress), the task has incorporated critical 

soil processes required for salinity risk assessment associated with irrigation water. In doing so, this 

task addressed several of the knowledge gaps that are pivotal for an improved salinity/sodicity risk 

assessment. This task therefore informs optimisation of irrigation practices that will yield minimal 

long-term effects on soil productivity. 

Although the Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZECC 

2000) provide background information on quality of irrigation water for different soil types, including 

permissible levels of chloride, sodium and SAR, and concentrations of metals and metalloids in 

irrigation, these are general values that do not take into account site-specific conditions that govern 

effects on soil productivity. Therefore, site-specific assessments are the recommended approach to 

develop sustainable irrigation practices where irrigation water quality is optimised for specific soil-

crop-groundwater conditions and linked to localised management and infrastructure needs. 
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2 Soil water and soil chemistry models 

2.1 Introduction 

To quantitatively assess salinity risks associated with long-term irrigation using recycled water 

requires effective numerical tools that couple major ion soil chemistry to unsaturated flow and plant 

water uptake. Such models should be able to explicitly incorporate effects of salt concentrations on 

soil hydraulic properties and on root water uptake (so‐called salinity stress) (Figure 1). The state-of-

the-science HYDRUS-1D simulator (Šimůnek et al., 2008, 2013, 2016) has been used to model the 

water and salt balance for a range of different water sources, each with their specific chemical 

composition. HYDRUS-1D is a public domain Windows-based modelling environment for analysis of 

coupled variably-saturated water flow and transport of multiple solutes.  

In doing so, the current Task 2 addressed several of the knowledge gaps identified in the Introduction 

Section that are pivotal for an improved salinity/sodicity risk assessment. This task therefore informs 

optimisation of water quality scenarios that will yield minimal long-term effects on soil productivity. 

This task has a critical dependency on Task 1, 3 and 4, where input parameters are generated for water 

source and receiving environment. These tasks together will enable the answering of critical question 

“what water is sustainable to use where and for how long?”  

 

Figure 1. Conceptual representation of the coupled water and chemical processes acting on a soil profile 

subject to boundary conditions (rainfall, irrigation, transpiration, evaporation, capillary rise). These coupled 

processes are represented in the HYDRUS-1D UNSATCHEM simulator which is used in this study (modified 

from Šimůnek and van Genuchten, 2006). 
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The major ion chemistry module UNSATCHEM (Šimůnek and Suarez 1994, 1997; Šimůnek et al., 2008; 

2013), available in the HYDRUS simulator, has been used as a tool for assessing different water quality 

scenarios for current soil status to inform longevity of utilisation of water from a range of sources and 

of different qualities, including reclaimed water. Simulations with different water qualities will provide 

detailed results regarding soil quality, i.e., salinity, SAR, and exchangeable sodium percentage (ESP). 

This modelling allowed an assessment of the longevity of the irrigation using water with different 

qualities and allowed testing of implementing mitigation strategies to prevent soil degradation. This 

modelling can also be used to inform soil monitoring programs and inform the long term planning for 

the development of the region. This task links with Task 1 and, by understanding the baseline soil 

status, provides a cost effective way to optimise the quality of irrigation water used in the region to 

ensure the soils are managed sustainably.  

One of the unquantified benefits of using recycled water is the provision of nutrients that support crop 

growth. Modelling of nutrient fate and behaviour will also determine risk of contamination of the 

groundwater and nearby waterways by nutrients, such as nitrate and other agrochemicals that may 

potentially be transported through the soil or off-site. The identification of high risk areas for potential 

contamination will also be available to inform monitoring programs and the implementation of 

mitigation strategies such as maintaining buffers zones next to streams to minimise adverse 

environmental outcomes that may arise from the expansion of horticultural activities in the area. 

2.2 Soil hydrological model 

Simulation of variably saturated flow in soil requires a mathematical relationship between i) the soil 

water content () and the soil pressure head (h), i.e. the soil water retention curve  (h), and ii) either 

the water content or the pressure head and the unsaturated hydraulic conductivity, K() and K(h), 

respectively. We applied the analytical model of van Genuchten (1980) to describe the soil water 

retention curve,  (h), since it permits a relatively good description of  (h) for many soils using only a 

limited number of parameters. We assumed the non-hysteretic form of the soil water retention curve. 

The van Genuchten (1980) soil moisture retention characteristic is defined as: 

 𝜃(ℎ) = 𝜃𝑟 +
𝜃𝑠−𝜃𝑟

(1+|𝑎ℎ|𝑛)𝑚 (1) 

where  r is the residual water content [cm3/cm3],  s is the saturated water content [cm3/cm3], and α 

[1/m], n [-] and m (= 1 – 1/n) [-] are the retention curve shape parameters. The van Genuchten (1980) 

 (h) equation has the additional advantage that when coupled with the unsaturated hydraulic 

conductivity K(h) model of Mualem (1976), it produces the following closed-form expression: 

 𝐾(ℎ) = 𝐾𝑠𝑆𝑒
𝑙 [1 − (1 − 𝑆𝑒

1/𝑚
)

𝑚
]

2

  (2) 

where Ks is saturated hydraulic conductivity [cm/day], Se = ( - r)/( s - r) is the effective saturation [-

], m=1-1/n, and n>1. The pore-connectivity parameter (l) was estimated by Mualem (1976) to be about 

0.5 as an average for many soils. In this study, we used Equation (2) with the l parameter fixed at 0.5, 

while KS was derived either by direct measurement on undisturbed soil samples or indirectly estimated 

using a variety of approaches (for details, see Appendix 1). Equation (1) was fitted to measured soil 

water retention data for undisturbed soil samples from key soils in the NAP region, where samples 

were available, or indirect estimation methods were adopted (see Chapter 3 and Appendix 1 for 

details).  
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2.3 Soil geochemical model 

Migration of chemicals in soil is primarily by advection and dispersion (ignoring gaseous transport) 

when advection (i.e. mass transport by flowing water) is greater than the rate of diffusion (i.e. mass 

transport by a concentration gradient). For the transport of contaminants during transient water flow, 

HYDRUS implements the advection-dispersion equation which couples mass transport by flowing 

water, mechanical dispersion and molecular diffusion (Šimůnek et al., 2008, 2013). In this study, a 

dispersivity of 0.1 m was taken, or one twentieth of the total travel distance from top to bottom of 

the 2 m deep soil profile. This dispersivity is based on the best estimate mean value for 0.8 – 2 m deep 

fine-textured soil profiles derived from a major literature review (Vanderborght and Vereecken, 2007).  

The solute transport module of HYDRUS-1D as described above is limited to single ions, or ions subject 

to relatively simple first-order consecutive decay or transformation reactions (e.g., nitrification-

denitrification chains, or radionuclide decay chains). As an extension to this approach, HYDRUS-1D 

implements a major ion chemistry module based on the UNSATCHEM model (Šimůnek and Suarez 

1994, 1997; Šimůnek et al., 2008, 2013). The UNSATCHEM module of HYDRUS-1D enables quantitative 

predictions of processes involving major ions, such as simulations of the effects of salinity on plant 

growth and estimating the amount of water and amendments required to reclaim soil profiles to 

desired levels of salinity and ESP (Šimůnek et al., 2006) or to optimise water quality for sustainable 

irrigation (Mallants et al., 2017). 

The UNSATCHEM module (Šimůnek and Suarez, 1994) considers the transport of major ions and 

carbon dioxide in soils. The major variables of the chemical system are Ca, Mg, Na, K, SO4, Cl, NO3, 

H4SiO4, alkalinity, and CO2 (Table 2). The model accounts for equilibrium chemical reactions between 

these components such as complexation, cation exchange, and precipitation-dissolution. For the 

precipitation-dissolution of calcite and the dissolution of dolomite, either equilibrium or 

multicomponent kinetic expressions are used, including both forward and backward reactions. Other 

precipitation-dissolution reactions considered involve gypsum (CaSO4.2H2O), hydromagnesite 

(Mg5(CO3)4(OH)2.4H2O), nesquehonite (MgCO3.3H2O) (Mg), and sepiolite (Mg2Si3O7.5(OH).3H2O). Since 

the ionic strength of soil solutions can vary considerably in time and space and often reach high values, 

both the modified Debye-Hückel and Pitzer expressions were incorporated into the model, thus 

providing options for calculating single-ion activities (Šimůnek et al., 2013).  

Table 2. Chemical species included in the UNSATCHEM major ion module of HYDRUS-1D (Šimůnek et al., 2008). 

CHEMICAL SPECIES GROUP # CHEMICAL SPECIES 

Aqueous components 7 Ca2+, Mg2+, Na+, K+, SO4
2-, Cl-, NO3

- 

Complexed species 10 
CaCO3

0, CaHCO3
+, CaSO4

0, MgCO3
0, MgHCO3

+, MgSO4
0, NaCO3

-, NaHCO3
0, 

NaSO4
-, KSO4

- 

Precipitated species 6 
CaCO3, CaSO4·2H2O, MgCO3·3H2O, Mg5(CO3)4(OH)2·4H2O, 

Mg2Si3O7.5(OH)·3H2O, CaMg(CO3)2 

Sorbed (exchangeable) species 4 Ca, Mg, Na, K 

CO2-H2O species 7 𝑃𝐶𝑂2
, H2CO3, CO3

2-, HCO3
-, H+, OH-, H2O 

Silica species 3 H4SiO4, H3SiO4
-, H2SiO4

2- 

 

Partitioning of dissolved major ions between the solid and solution phases is described with the Gapon 

equation (White and Zelazny, 1986) provided in the HYDRUS-1D Major Ion Chemistry module. This 

requires the definition of the Gapon Exchange Constants for exchange of calcium and magnesium, 
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calcium and potassium, and calcium and sodium. The Gapon Exchange Constants are described in 

Appendix 2. 

UNSATCHEM also considers the effects of solution composition on the unsaturated soil hydraulic 

properties. The accumulation of monovalent cations, such as sodium and potassium, often leads to 

clay dispersion, swelling, flocculation and overall poor soil physico-mechanical properties. These 

processes have an adverse effect on the soil hydraulic properties including hydraulic conductivity, K(h), 

infiltration rates and soil water retention as a result of swelling and clay dispersion. These negative 

effects are usually explained based on the diffuse double layer theory. 

The effect of solution chemistry on the hydraulic conductivity K(h) in the major ion chemistry module 

is calculated as: 

 𝐾(ℎ, 𝑝𝐻, 𝑆𝐴𝑅, 𝐶0) = 𝑟(𝑝𝐻, 𝑆𝐴𝑅, 𝐶0)𝐾(ℎ) (3) 

where SAR is the sodium adsorption ratio, C0 is the total salt concentration of the ambient solution 

(meq/L), and r is a scaling factor which represents the effect of the solution composition on the final 

hydraulic conductivity [-], and which is related to pH, SAR, and salinity (Šimůnek et al., 2008). 

Conceptually, this effect is related to clay swelling as a result of changes in ion composition here 

expressed via the parameters SAR and C0 (McNeal, 1968, 1974). Although soil water retention curves 

may also be affected by SAR and electrolyte concentrations (e.g., Lenhard and Brooks, 1986), this is 

not being considered in the current simulations. The parameter r(pH, SAR, C0) in Equation (3) is 

calculated internally in the UNSATCHEM module based on calculated values for pH, SAR, and C0. The 

K(h) parameter was determined as described previously (see Equation (2)).   

We note that other effects of solution chemistry on hydraulic properties, such as mineral precipitation 

resulting in a decrease of pore space and hence a decrease in hydraulic conductivity, may be equally 

important to determine a soil’s water balance under irrigation in arid and semi-arid regions. Examples 

of a more general approach to couple major ion chemistry with porous media hydraulic and solute 

transport parameters are available from Jacques et al. (2013a, b).  

2.4 Root water and solute uptake model 

The volume of water removed from a unit volume of soil per unit time due to plant water uptake, S(h) 

[day-1], is defined as (Šimůnek et al., 2008): 

 𝑆(ℎ) = 𝛼(ℎ)𝑏(𝑧)𝑇𝑝   (4) 

where α(h) is the plant-water stress response function (between 0 and 1, see Figure 2), b(z) is the 

normalised water uptake distribution [cm-1] (here assumed linearly decreasing with depth), and Tp is 

potential transpiration [cm/day]. The parameters for the plant-water response function α(h) (Feddes 

et al., 1978) are defined in Table 3. The parameter b(z) is defined by the rooting depth of the various 

crops (see Appendix 3). Plant transpiration Tp was calculated in Section 4.2. 

When salinity stress is considered in HYDRUS, a selection must be made whether the effect of salinity 

stress is additive or multiplicative to water stress. Here the multiplicative Threshold Model according 

to Maas (1990) was selected. The Threshold Model has two parameters, the threshold parameter and 

the slope parameter. The first parameter represents the value of the minimum osmotic head (the 

salinity threshold) above which root water uptake occurs without any reduction. The second 

parameter is the slope of the curve determining the fractional root water uptake decline per unit 
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increase in salinity below the threshold. Salinity stress parameters for selected crops were used to 

investigate combined water and salinity stress (see Appendix 3 for further details).  

 

Figure 2. Plant water stress response function for pasture as applied in this study (based on Feddes et al. 

(1978)). For definition of parameters, see Table 3. 

 

Table 3. Parameters for the stress response functions due to water stress (based on Wesseling et al., 1991). 

Example is for pasture. 

PARAMETERS OF THE WATER STRESS RESPONSE FUNCTION (FEDDES’ PARAMETERS) 
PARAMETER PASTURE PARAMETER DEFINITION 

h1 (cm) -10 Value of the pressure head below which roots start to extract water from the soil 

h2 (cm) -25 Value of the pressure head below which roots extract water at the maximum 

possible rate 

h3 (cm) -200 Value of the limiting pressure head, below which roots cannot longer extract water 

at the maximum rate (assuming a potential transpiration rate of 0.5 cm/day) 

h4 (cm) -800 Value of the limiting pressure head, below which roots cannot longer extract water 

at the maximum rate (assuming a potential transpiration rate of 0.1 cm/day) 

h5 (cm) -8000 Value of the pressure head, below which root water uptake ceases (usually taken at 

the wilting point) 

 

A summary of threshold models for crops of the NAP is shown in Figure 3; also included are the range 

of safe soil water salinities ECSW (green band) and the range of soil water salinities as calculated in this 

study (red band). This graph also shows which are the most salt tolerant crops (Pistachios, Rye grass) 

and which are the least salt tolerant crops (carrot, onion, almond, etc.).  
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The sensitivity of other crops that were not explicitly simulated can be readily inferred from 

parameters determining water stress and salinity stress and comparing those between simulated 

crops and other crops of interest. Relevant water and salinity stress parameters are available in 

Appendix 3. For example, for water stress, broccoli and cabbage behave similar to carrots (nearly 

identical root water uptake parameters). These crops (cabbage, broccoli, carrots) also have identical 

crop coefficients (KC) to calculate crop evapotranspiration (ETC). Hence, from a water stress calculation 

point of view, these crops are interchangeable. Regarding salinity stress, carrots (threshold EC = 1.0 

dS/m) and onions (threshold EC = 1.2 dS/m) are more sensitive than cabbage (threshold EC = 1.8 dS/m) 

and broccoli (threshold EC = 2.8 dS/m). In other words, the more sensitive crops were studied in detail 

here; results for the less sensitive crops would be at least as good as for the sensitive crops. 

 

 

Figure 3. Threshold model indicating degree of salinity stress for various crops. ECSW is simulated soil water 

electrical conductivity. 
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3 Data collection for modelling 

3.1 Soil physical properties 
 

Soil physical properties required for our study included particle size distribution and bulk density of all 

soil horizons of the key soil types considered, as these were used to indirectly estimate hydraulic 

properties (see further Section 3.2). Although a large number of soil samples were collected in this 

study to obtain site-specific measurements of these parameters (see Task 1 report, Oliver et al., 2019), 

it would not be possible to cover the full spatial variability of these soil properties. Also, not all soil 

horizons could be accessed during the soil sampling, usually because the layers were too deep for 

hand auguring or too hard to penetrate with manual sampling tools. For this purpose the new field-

based data will be supplemented with data from existing databases.      

Particle size and bulk density data was used to generate soil hydraulic properties for each soil horizon 

using pedotransfer functions based on the existing tool ROSETTA that is implemented in HYDRUS-1D 

(Šimůnek et al., 2016).  

3.1.1 Properties from database 

The study area lies between Gawler River, Light River, and Kapunda Road, South Australia, hence, the 

use of this boundary to create the soil groups map and generate summary statistics that describe the 

distribution of soil groups in the area (Figure 4). Table 4 shows the soil group distribution in the wider 

NAP region based on the soil group classification for South Australian soils. The six main soil groups 

are hard red brown (39%), calcareous (17%), gradational soils (13%), deep uniform to gradational (6%), 

sand over clay soils (6%), and cracking clay soils (5%). All remaining five soil groups represented each 

less than 5% of the study area.  

Table 4. Soil group distribution of 15 generalised soil groups (only soils with > 1% of study area are shown) 

SOIL GROUP DESCRIPTION % OF STUDY AREA 

Hard red-brown texture contrast soils with alkaline subsoil 39% 

Calcareous soils 17% 

Gradational soils with highly calcareous lower subsoil 13% 

Deep uniform to gradational soils 6% 

Sand over clay soils 6% 

Cracking clay soils 5% 

Deep loamy texture contrast soil with brown or dark subsoil 4% 

Wet soils 4% 

Shallow soils on calcrete or limestone 3% 

Shallow soils on rock 1% 

Deep sands 1% 

 

When the focus area was limited to the priority primary production area (SA Government, 2017), the 

major soil groups and their areal distribution were: hard red brown (52%), deep uniform to gradational 
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(13%), calcareous (12%) and sand over clay (10%). The remaining area (about 12%) was occupied by 

gradational soils with highly calcareous lower subsoil (6%), deep loamy texture contrast soil with 

brown or dark subsoil (4%), and shallow soils on calcrete or limestone (2%). For details of the focus 

area, see Report Task 1 (Oliver et al., 2019).    

On the basis of the Interactive NatureMaps1 database, a total of fourteen soil profile sites were 

identified inside the wider study area. The sampling points from the NatureMaps were overlain onto 

the GIS database to generate the soil attribute maps and to extract the soil type classification of the 

sampling points. Based on the dominant soil group within each cluster, five soil groups were identified 

(Table 5). For each of these fourteen soil profiles, physical and chemical attributes were derived from 

the GIS database Land and Soil Spatial Data for Southern Australia (Liddicoat et al., 2014).  

Table 5. Soil group cluster and description. 

SOIL GROUP DEWNR SITE MEAN 
DISTRIBUTION  
OF DOMINANT 
SOIL (%) 

DESCRIPTION 

Group 1 

CL015 

55 Calcareous soils 
CL029 

CL030 

CL053 

Group 2 

CL027 

65 

Hard red-brown texture 

contrast soils with alkaline 

subsoil 

CL028 

CL058 

Group 3 CL007 50 Cracking clay soils 

Group 4 

CL008 

86 Sand over clay soils 
CL014 

CL050 

CL051 

Group 5 
CL033 

80 
Deep uniform to gradational 

soils CL049 

 

The soil attribute maps generated through this process include the toxicity of aluminium and boron, 

salinity, depth to water table, deep drainage, and potential root zone depths for different crop types 

(see Appendix 4). These maps provide useful background information for the further planning of 

expansion of irrigated agriculture in the Northern Adelaide Plains, and in the area north of the current 

study area between Gawler and Light River. 

Similarly, particle size data were generated from the ASRIS database (Australian Soil Resource 

Information System2) to determine sand, silt, and clay content for the soils based on the 14 sampling 

 
1 https://data.environment.sa.gov.au/NatureMaps/Pages/default.aspx 
2 http://www.asris.csiro.au/ 

http://www.asris.csiro.au/
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points. The data were available for the following six soil depths: 0-5, 5-15, 15-30, 30-60, 60-100, and 

100-200 cm. The data were provided in three confidence levels, i.e. 5th percentile, Estimated Value 

(EV), and 95th percentile. The EV represents the predicted central value of the distribution and was 

calculated as the weighted mean soil property value (Odgers et al., 2015). Details of how the 5th and 

95th percentiles were calculated are available from Odgers et al. (2015). For this study, use was made 

of the EV as this would provide representative average values for each soil property. Bulk density data 

were generated using the same method; together with particle size data, bulk density was 

subsequently used to generate hydraulic properties using pedotransfer functions (see Section 3.2 and 

Appendix 1).  

Based on the 14 different sites across five soil groups, statistical profiles of soil physical parameters 

were derived for each soil group. For each statistical profile we calculated the minimum, mean, and 

maximum value of % sand, silt, clay, and bulk density. There are thus three data sets for each soil 

group that will be subsequently used to generate the soil hydraulic functions (section 3.2). Example 

statistical profiles of particle size are shown for calcareous soils (Figure 5); a complete description for 

all others soils can be found in Appendix 5. 

Soil Group 1 describes calcareous soils which has been classified into eight soil types from A1 to A8 

(Hall et al. 2009). The soils of this group are generally calcareous throughout, with gradational to 

uniform texture profiles and surface textures of loamy sand to light clay. Statistical profiles of particle 

size shown in Figure 5 highlight the decreasing sand content with increasing depth and the increasing 

clay content with increasing depth. The silt content is fairly constant across the entire profile. 
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Figure 4. Soil groups within the study area for the Goyder NAP project (green boundary) with indication of soil profile locations within the focus area (green circles) and outside the focus 

area (black circles). 
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Figure 5. Statistical profiles of particle size (% sand, silt, clay) for Soil Group 1 (calcareous soil). 

3.1.2 Properties from field investigations 

Particle size and bulk density were also obtained through direct measurement on soil samples collected from 

10 sites that were visited during this project (sampling sites are described in Task 1 Report, Oliver et al., 2019). 

Samples consisted of disturbed material for particle size analysis and undisturbed cores for measurement of 

bulk density (this section) and hydraulic properties (section 3.2). Soil profiles were distributed across four soil 

groups: calcareous soils (3), hard red brown soils (6), sand over clay soils (3), and deep uniform to gradational 

soils (1). Soil samples could generally be collected only for shallow soil depths, usually up to 30 or 60 cm and 

exceptionally up to 90 cm (see Appendix 1 for details).  

3.2 Soil hydraulic properties  

3.2.1 Developing and testing predictive models of hydraulic properties 

Soil hydraulic properties are key input parameters for modelling the soil water and salt balance of irrigated 

soil. To generate sufficient hydraulic properties for the Northern Adelaide Plains irrigation project in a cost-

effective manner, pedotransfer functions (PTF) have been used that utilise existing gridded basic soil 

properties such as particle size and bulk density (Figure 6). The predictive capacity of PTF generally increases 

when more input data is provided. Therefore, this study explored different approaches that use different 

type of data when generating soil hydraulic properties through PTFs. The predictive capacity of the 

approaches was tested using a limited set of independent soil hydraulic property data (water retention curve 

and saturated hydraulic conductivity, Ks). Because of the inherent limitations in pedotransfer function 
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generated hydraulic properties (Espino et al., 1995), they have only been considered as input data to 

HYDRUS-1D where no other data was available.  

 

Figure 6. Prediction of soil hydraulic properties using ROSETTA (Schaap et al., 2001). In this study the %Sand, Silt, Clay 

and Bulk Density (BD) model was applied. 

 

Hydraulic properties are required for all soil layers as input for the HYDRUS-1D model. Because we did not 

have the resources to measure hydraulic properties for all soils at all depths, and because only shallow soil 

depths were accessible for undisturbed core sampling, we used different approaches to generate soil 

hydraulic properties. 

The first approach used pedotransfer functions based on the existing ROSETTA tool (Schaap et al., 2001) that 

was implemented in HYDRUS-1D (Figure 6). The data to feed ROSETTA included particle size, bulk density and 

water content at specific pressure head (if available). Some of those data (particle size and bulk density) were 

available in gridded form from the CSIRO database (Soil and Landscape Grid Digital Soil Property Maps for 

South Australia [3” resolution - approx. 100m cell size]) (Liddicoat et al., 2014). This data has been used here 

and is the first approach to generate soil hydraulic properties. Because these particle size and bulk density 

data are predictions themselves, there is likely a considerable uncertainty around them. 

The ability of the PTFs of Schaap et al. (2001) to reliably predict soil water retention parameters was tested 

by comparing the predicted values with direct measurements. For this purpose we used cores on which both 

input parameters for the pedotransfer function were known (particle size and bulk density) and direct 

measurements of hydraulic properties were available. Two data sets were used for this purpose: i) a database 

from Green (2010) involving two Soil Groups (sand over clay soils and hard red brown soils), and ii) the 
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database obtained in the current project encompassing four Soil Groups (sand over clay soils, hard red brown 

soils, deep uniform to gradational soils, and calcareous soils). Cross plots for the four van Genuchten 

parameters are shown in Figure 7. Pearson correlation coefficients for all parameters are listed in Table 6. 

The general trend is that, based on Table 6, the van Genuchten α parameter has the poorest predictions 

while the remaining parameters are reasonably well predicted. 

 

  

Figure 7. Validation of PTF using CSIRO’s laboratory data (this study) and Green’s field data (Green, 2010). Soil group 

A = calcareous soils; soil group D = hard red brown soils; soil group G = sand over clay soils; soil group M = deep 

gradational soils. Parameter shown are van Genuchten’s shape parameters n and α, saturated water content (s) and 

residual water content (r). 
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Table 6. Pearson correlation coefficient between estimated (pedotransfer function - PTF) and measured (laboratory) 

van Genuchten parameters (α, n, θr, θs). 

PARAMETER PEARSON CORRELATION COEFFICIENT 
ALL SOIL GROUPS 
COMBINED 

HARD RED BROWN 
SOILS 

SAND OVER CLAY SOILS CALCAREOUS SOILS 

α (PTF) - α (lab) 0.324 0.412 0.429 0.270 

n (PTF) - n (lab) 0.706 0.417 0.598 0.359 

θr (PTF) -  θr (lab) 0.744 0.822 0.910 0.708 

θs (PTF) -  θs (lab) 0.517 0.010 0.910 0.715 

 

The second approach was to use the measured particle size and bulk density from the soil sampling (Section 

3.2.2) and use those data as input to the PTFs. While these estimates will still have a considerable degree of 

uncertainty, they will be more representative of the local soil properties than the first approach which only 

used gridded data.  

The third approach used mid-infrared (MIR) spectroscopy to estimate basic soil properties (Soriano-Disla et 

al., 2014). Spectroscopic methods such as MIR provide reflectance spectra that are characteristic of the soil 

type and its chemical/molecular composition, therefore are suitable for the analysis of physical, chemical, 

and hydraulic soil properties. This method required calibration models between IR spectra (i.e. predictor 

variables) and reference soil property values (i.e. response variables). The response variables were available 

from shallow soils depths as discussed in section 3.1.2. The MIR method was used to predict water content 

at different soil pressure heads (0.01, 4, 8, 33, 60, 100, and 1500 kpa) and saturated hydraulic conductivity 

(KS). These water content – pressure head data were then used to fit the van Genuchten soil water retention 

model (Appendix 1). The reliability of the MIR predictions can be asserted from the cross plot in Figure 8; 

water contents are very well predicted for soil suction of 8 KPa and higher, while the water contents at low 

suction have inferior predictions. This is not a surprise: at the 0.01 and 4 kPa soil suction the soil structure is 

the dominant factor determining soil water content. Because soil structure (i.e., spatial arrangement of soil 

particles into larger aggregates) is relatively difficult to measure with MIR, the soil water content predictions 

are somewhat less reliable. At the higher suctions (8 kPa and higher), soil texture (particle size distribution) 

is the dominant factor in determining soil water content. Because soil texture is relatively easily predicted 

with MIR, the water content is too. 

3.2.2 Direct measurement on undisturbed soil cores 

Undisturbed 0.05 m diameter and 0.05 m high soil cores collected from the field were allowed to gradually 

saturate from the base upward over approximately 7 days. When samples were deemed to be fully saturated, 

the hydraulic conductivity was measured using the constant head method of Youngs (2001). 

When all measurements of saturated hydraulic conductivity were completed, the soil cores were 

disconnected from their hydraulic extensions and weighed to obtain their saturated weights. The cores were 

then placed onto saturated ceramic plates connected to either hanging columns of water, or exposed to 

positive gas (nitrogen) pressures in sealed chambers. The cores were exposed to a series of sequentially 

increasing hydrostatic pressures ranging from saturation (nominated to be 0.1 kPa) to 4, 8, 33, 60 and 100 

kPa (1kPa equals 10 cm of water column). When equilibrium was deemed to have occurred (based upon 

experience and measurement) each soil core was weighed, re-saturated and placed back onto a ceramic plate 

for the next pressure. After weighing the samples at 100 kPa, they were dried to constant weight in an oven 

at 105 °C, then re-weighed (and the tare weight of the stainless steel ring, mesh and elastic band recorded). 

Separate pieces of soil (saved from trimming each core) were used to measure the water content of the soil 
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at 1500 kPa. To achieve this, small duplicate samples were placed directly onto the surface of saturated 

ceramic plates (capacity 15 bar) and exposed to 1500 kPa of nitrogen gas pressure in reinforced steel 

chambers for 6 weeks. Full details of the fitted moisture retention curves using the RETC (van Genuchten et 

al., 1991) code are available in Appendix 1. Example measured and fitted moisture retention curves are 

shown in Figure 9. 

 

Figure 8. Comparison between measured and mid-infrared spectroscopy (MIR) predicted soil water content. All soil 

groups combined. 

3.2.3 Combined data sets for field soils 

Three datasets were combined to have the best available soil hydraulic parameters for use in the HYDRUS-

1D simulations across the different soil groups and soil depths. For the shallowest depths, the directly 

measured values were used: these provide the highest reliability as they do not depend on some prediction 

method using related prediction variables. Where such data were not available, the MIR predictions were 

used as second-best option as they provide site specific estimates using site-specific auxiliary data. Finally, if 

neither direct measurements nor MIR predictions were available, the pedotransfer function predictions 

based on the regional data set were used. An example summary dataset for calcareous soil is shown in Table 

7. 
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Figure 9. Fitted retention curve using the van Genuchten model. Saturated (θs) and residual (θr) water content were 

fixed during the optimisation with RETC (van Genuchten et al., 1991). Values for θr were fixed to 50% of the measured 

water content at 1500 kpa. Soil profile NAP11 – sand over clay (left column); soil profile NAP8 – deep uniform to 

gradational (right column). 

 

Table 7. Summary of van Genuchten soil hydraulic parameters (α, n, θr, θs), saturated hydraulic conductivity (KS) and 

pore connectivity parameter l. Direct measurements on site specific soil cores (0 - 30 cm); predicted with MIR using 

site specific core material (30 - 100 cm); PTF predictions (100 - 200 cm). 

 
SOIL 
DEPTH 
(CM) 

SOIL GROUP 1: CALCAREOUS SOILS 

ΘR 
(CM3/CM3) 

ΘS 
(CM3/CM3) 

α  
(CM-1) 

N 
(-) 

KS 
(CM/DAY) 

L 
(-) 

0-15 0.078 0.480 0.035 1.239 207.36 0.5 

15-30 0.096 0.482 0.085 1.208 181.44 0.5 

30-60 0.0758 0.485 0.2781 1.1639 146 0.5 

60-100 0.0001 0.4810 0.2305 1.1382 267.79 0.5 

100-200 0.0735 0.4087 0.0242 1.298 22.91 0.5 
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3.2.4 Data for greenhouse soils 

Soil hydraulic properties for greenhouse soils were obtained in a two-step approach: step one involved 

generating soil water retention data (θ, h) by means of MIR, step two used the RETC code to fit the van 

Genuchten parameters to the water retention data (Figure 10). The data from Figure 10 are from one and 

the same greenhouse, showing a very similar behaviour likely due to the top soil becoming homogenised 

after several years of soil management (further details in Appendix 1).  

 

Figure 10. Measured and fitted water retention curves for greenhouse soil. All 3 sampling locations from one farm. 
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3.3 Soil chemical data 

Soil chemical parameters required for the UNSATCHEM module included the Gapon Exchange Constants, the 

initial concentrations of soil exchangeable cations (K+, Na+, Ca2+, Mg2+), and the initial solution composition 

(K+, Na+, Ca2+, Mg2+, Alkalinity, SO4
2-, Cl-) in the soil profile. The latter was defined using the composition of 

rainwater measured in the Adelaide region (Cresswell et al., 2010). Note that this initial solution will be 

automatically brought into equilibrium with the cation exchange complex. The soil exchangeable cations 

were taken from the Task 1 Report (Oliver et al., 2019). 

Partitioning of dissolved major ions between the solid and solution phases is described with the Gapon 

equation (White and Zelazny, 1986) provided in the major ion chemistry module. This requires the 

definition of the Gapon Exchange Constants for exchange of calcium and magnesium, calcium and 

potassium, and calcium and sodium (Gapon, 1933; Šimůnek and Suarez, 1994): 

 0.5𝐶𝑎 + 𝑁𝑎 − 𝑋 ↔ 𝑁𝑎 + 𝐶𝑎0.5 − 𝑋 (5) 

 0.5𝐶𝑎 + 𝐾 − 𝑋 ↔ 𝐾 + 𝐶𝑎0.5 − 𝑋 (6) 

 0.5𝑀𝑔 + 𝐶𝑎0.5 − 𝑋 ↔ 0.5𝐶𝑎 + 𝑀𝑔0.5 − 𝑋 (7) 

where Ca, Mg, Na, and K are solution concentrations, and all other species (e.g. Na-X) are adsorbed onto the 

exchange sites -X. The Gapon selectivity or exchange coefficients for reactions (5-7) are defined as (Šimůnek 

and Suarez, 1994): 

 𝐾𝐶𝑎/𝑁𝑎 =
[𝐶𝑎−𝑋] [𝑁𝑎]

[𝑁𝑎−𝑋][𝐶𝑎]0.5 (8) 

 𝐾𝐶𝑎/𝐾 =
[𝐶𝑎−𝑋] [𝐾]

[𝐾−𝑋][𝐶𝑎]0.5 (9) 

 𝐾𝑀𝑔/𝐶𝑎 =
[𝑀𝑔−𝑋] [𝐶𝑎]0.5

[𝐶𝑎−𝑋][𝑀𝑔]0.5  (10) 

 

where [Na], [K], [Mg], and [Ca] are molal activities in solution (dimensionless), and [Na-X], [K-X], [Mg-X], and 

[Ca-X] are adsorbed concentrations (mmolc/kg soil). All calculated mean Gapon coefficients are listed in Table 

8. Source data for the calculations were obtained from wet chemistry analysis (Task 1 Report, Oliver et al., 

2019), including all solution concentrations and adsorbed concentrations on the exchange sites. For details 

about the calculation procedure, see Appendix 2. 

Table 8. Mean values of Gapon selectivity or exchange coefficients KCa/Na, KCa/K, and KMg/Ca. 

SOIL GROUP KCa/Na KCa/K KMg/Ca 

Hard red brown 0.753 0.065 0.033 

Deep uniform to gradational 1.313 0.025 0.013 

Sand over clay 1.880 0.014 0.020 

Calcareous 0.957 0.009 0.038 
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3.4 Crop data for water balance modelling 

3.4.1 Root water uptake parameters 

To simulate the effect of both water and salinity stress on root water uptake, the suction-dependent plant-

water stress response function or Feddes’ model (Feddes et al., 1978) was implemented, together with the 

threshold-slope salinity stress model by Maas (1990). The database for the threshold model provides 

suggested values based on the electric conductivity of the saturation extract ECSe in dS/m (Appendix 3). These 

values are converted internally in the HYDRUS-1D GUI into the electric conductivity of soil water (at the field 

capacity) as follows: ECSW ≈ ke × ECSe, where ke is approximately 2 (Skaggs et al., 2006). Crop tolerance to 

salinity and threshold ECSe values used in this study are available from Table 9. Note that we used the same 

relationship ECSW = 2 × ECSe, to relate the electrical conductivity of the soil saturation extract ECSe (as 

expressed in Table 9) to the electrical conductivity of the soil at measured or predicted maximum field water 

content ECSW (assumed to represent the simulated electrical conductivity). 

Table 9. Salinity thresholds for crops considered in the calculations. Threshold = maximum soil salinity without yield 

loss.  

CROP TOLERANCE THRESHOLD ECSe (dS/M) YIELD REDUCTION 
(IN % PER dS/M) 

Almonds Sensitive** 1.5** 19** 

Pistachios Moderately tolerant# 9.4# 8.4# 

Wine grapes Moderately sensitive@ 1.5@ 9.6@ 

Carrots Sensitive* 1.0* 14* 

Onions Sensitive* 1.2* 15* 

Potato Moderately sensitive* 1.7* 12* 

Pasture crops Moderately tolerant* 5.6* 7.6* 

Data source: *Maas and Hoffman (1977); **Maas and Grattan (1999); @Francois and Maas (1999); #Sanden et al. (2004). 

 

3.4.2 Rooting depth 

The rooting depth value characterises the depth distribution of root water uptake, b(x) [L-1], in the soil root 

zone. Adopted rooting depths are listed in Table 10. 

Table 10. Rooting depths for crops used in HYDRUS-1D simulations. 

CROP ROOTING DEPTH (CM) REFERENCE  

Wine grapes 100 Phogat et al., 2017b 

Almonds 100 Phogat et al., 2018b 

Pistachios 100 Allen et al., 1998 

Pasture 100 Allen et al., 1998 

Onions 60 Allen et al., 1998 

Carrots 60 Allen et al., 1998 

Potatoes 60 Allen et al., 1998 
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3.4.3 Grouping of cropping systems for soil water and salinity balance calculations 

Seven crops account for over three-quarters of the irrigated horticulture area in the Northern Adelaide Plains, 

namely potatoes (25%), olives (12%), winegrapes (12%), almonds (9%), carrots (9%) and lettuce (8%), onions 

(4%) (City of Playford, 2013). Pastures cover 21% of the area (ABS, 2012). 

There are a wide range of potential crops that have been identified which could potentially be grown with 

recycled water. For the purpose of analysing their respective water demand, all potential crops and cropping 

systems were grouped into perennial horticulture (pistachios, almonds), viticulture, pastures (mixes), and 

annual horticulture (carrots, onions, potatoes) crops. The breakdown of cropping systems is provided in Table 

11 (based on Arris, 2015). For each cropping system, parameters for the root water uptake water stress 

response function for the Feddes model (Figure 2) are provided in Table 11 (based on data in Appendix 3). 

Within each cropping system, crops with similar (though not necessarily identical) water stress response 

parameters are combined for the purpose of modelling. Crops that have not been explicitly modelled will 

have similar water uptake than the explicitly modelled crops (underlined), provided they have a similar 

transpiration. 

Table 11. Root water uptake parameters for common crops based on Feddes model (Feddes et al., 1978). h1: no water 

extraction at higher pressure heads; h2: h below which optimum water uptake starts; h3: h below which water uptake 

reduction starts at high Tpot; h4: h below which water uptake reduction starts at low Tpot; h5: wilting point, no water 

uptake at lower pressure heads. Crops analysed in this study are underlined. Crops are grouped according to similar 

root water uptake parameters (for details, see source reference). 

CROPPING SYSTEM CROP ROOT WATER UPTAKE PARAMETERS (h1, h2, 
h3, h4, h5) 

REFERENCE 

Tree-fruit or top-

fruit/perennial 

horticulture 

Almonds -10; -25; -500; -800; -8,000 Phogat et al., 2012 

Apples/pears, cherries, 

lemons, viticulture 

-15; -30; -500; -800; -8,000 Taylor and Ashcroft, 

1972 

Olives 0; 0; -4,000; -4,000; -20,000 Rallo and Provenzano, 

2013 

Annual horticultural 

crops/broadacre 

vegetables 

Broccoli, carrots, parsnips*, 

onions, celery, lettuce, 

cabbage, melons 

-15; -30; -450; -550; -8,000 Taylor and Ashcroft, 

1972 

Potatoes -10; -25; -320; -600; -8,000 Wesseling et al., 1991 

Shrub nuts, fruits and 

berries 

Strawberries -15; -30; -1,000; -1,000; -8,000 Taylor and Ashcroft, 

1972 

Pistachio nuts, Quandong or 

native peach (Santalum  

acuminatum) 

-10; -25; -500; -800; -8000 Phogat et al., 2012 

Greenhouse and 

protected cropping 

Tomatoes, capsicums, 

cucumber, eggplant 

-15; -30; -800; -1,500; -8,000 Taylor and Ashcroft, 

1972 

Field and Fodder 

Crops/pastures 

Cereals 0; -1; -500; -900; -16,000 Wesseling et al., 1991 

Legumes, lucerne (alfalfa)  -15; -30; -1,500; -1,500; -8,000 Taylor and Ashcroft, 

1972 

Rye grass -10; -25; -200; -800; -8000 Taylor and Ashcroft, 

1972 

  

http://www.anbg.gov.au/cgi-bin/apni?taxon_id=6924
http://www.anbg.gov.au/cgi-bin/apni?taxon_id=6924
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3.4.4 Boundary conditions 

The lower boundary condition of the model domain was assigned a free drainage or zero-gradient boundary 

condition. A zero-gradient boundary condition is typically used to simulate a freely draining soil profile. Such 

a situation often occurs in field studies of water flow and drainage in the vadose zone. This lower boundary 

condition is most appropriate for situations where the water table lies far below the domain of interest 

(Šimůnek et al., 2008). In the current study the bottom of the model domain is at 2 m below surface. This 

assumes the groundwater table is at least at 2 m depth or deeper. This situation is true for many parts of the 

study area, as is shown in Figure 11 (derived by Task 4). Only soils closer to the coast would have a relatively 

shallow groundwater table, possibly within 2 m from the surface. In these soils water could move by capillary 

rise from the shallow groundwater table to the root zone and transport salts to the surface (e.g., Abliz et al., 

2016). The water evaporates leaving the salt in the surface layers of the soil. These soils are therefore at 

higher risk of becoming saline and require dedicated soil water management if put in production. It is worth 

noting that effects of shallow groundwater table are unique to each location and crops grown; in Tunesia, 

for instance, a saline groundwater table as shallow as 0.75 m did not have any negative effects on date palm 

transpiration, even when the irrigation water had a salinity of 4 dS/m (Askri et al., 2014). Note that the salinity 

of the Dissolved Air Flotation and Filtration (DAFF) recycled water ranges from 1.59 (autumn) to 1.85 dS/m 

(summer) (Task 3 Report, Awad et al., 2019).  

 

 

Figure 11. Depth to groundwater as derived by Task 4 (Batelaan et al., 2019). 

  



Sustainable expansion of irrigated agriculture and horticulture in Northern Adelaide corridor | 23 

 
 

The upper boundary of the HYDRUS-1D model was assigned an atmospheric boundary condition with daily 

inputs for rainfall as well as the potential evaporation (ES) and potential transpiration (Tp). Therefore, the 

daily ES and Tp values for all crops (wine grape, almond, pistachio, pasture, carrot, onion and potato) for 

historic and future climate were estimated following the FAO-56 dual crop coefficient approach (Allen et al., 

1998). Subsequently, this approach was used to estimate annual irrigation requirements of different crops. 

All relevant information for this approach and results obtained for the NAP soils-climate conditions are 

summarised in Appendix 6.  

Climate parameters were obtained from Bureau of Meteorology (BOM) Station No 023083 at Edinburgh RAAF 

site (Latitude -34.7111, Longitude 138.6222) for historical data (1970-2017) and from the Goyder climate 

projection data for this station (2018-2050). Initially, the model was warmed up for 48 years (from July 1970 

to June 2018) using the BOM climate data to stabilise the input parameters and attain equilibrium conditions 

for chemical species in the soil. Subsequently, the model was run using the median future climate data 

generated by the Goyder Institute for Water Research for South Australia (Charles and Fu, 2015) on the 

agreed set of downscaled projections. 
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4 Scenario modelling 

4.1 Overview of scenarios 

The assessment of potential impact of the use of different water qualities for long-term irrigation involved 

the definition of several scenarios. The modelling scenarios were grouped in several themes (Table 12); a 

brief description of the modelling scenarios is given here, and more details are provided in the respective 

modelling sections (4.2 – 4.8) and their Appendices. 

Table 12. Scenarios considered for impact modelling. 

THEME EXPLANATION 

Reference simulation (outdoor 
soil-based cropping) 

Recycled water with DAFF Water Quality is used as a reference. 

4 soil types (HRB, CAL, SOC, DUG) covering cover 70% of NAP area. 

7 crop types (almonds, vines, pistachios, pasture (rotational grazing with a mix of rye grass and 

white clover), potatoes, carrots, onions) 

Estimation of irrigation requirements (20% leaching) 

Water quality alternatives Following water qualities are explicitly simulated: mains water from SA Water (SAW); blended 

water (in proportion DAFF:SAW = 1:1); alternative water applications with monthly cycles 

(DAFF/SAW) or half-year cycles (DAFF/SAW) 

Not explicitly simulated water qualities, however impacts can be derived: groundwater (T1/T2 

aquifer; Managed Aquifer Recharge (MAR)); surface water with chemical composition similar to 

DAFF water; urban storm water and farm dams with chemical composition similar to SAW. 

Management options (outdoor 
soil-based cropping) 

Gypsum application to manage soil sodicity (4 levels) 

Increased leaching fractions: 30%, 40%, 50% 

Glass house cropping Cucumber, tomatoes, capsicums, egg plant 

Estimation of irrigation requirements 

Management options (glass 
house cropping) 

Gypsum application with 4 levels; leaching fraction: 20%, 30%. 

Management of solute load to 
streams 

Optimising riparian zone widths to control lateral solute migration 

Other toxicity Boron toxicity 

Climate extremes  Impact on crop production from extremely hot days (>35°C), hot spells, dry days (<1 mm rain), dry 

spells, and chilling days. Effect of a drier and hotter climate on annual irrigation requirements. 

 

The reference scenario theme was developed for outdoor soil-based cropping and considered four soil types 

and seven crops (Table 12). In the reference scenario the DAFF recycled water was used for irrigation. Two 

sets of scenarios were run with HYDRUS-1D: one set determined the annual irrigation requirement (includes 

a 20% leaching fraction), while the second set evaluated the effect of recycled water on soil chemical 

parameters (ECSW, SAR, ESP). Note that simulations with HYDRUS-1D did not assume any particular form of 

irrigation, e.g. drip, subsurface or sensor-triggered irrigation. The irrigation water is assumed to be applied 

at the soil surface in the same way as rain water is applied at the soil surface. Only when HYDRUS-2D was 
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applied (see Section 4.6) did we use the so-called “trigger option”, in which case irrigation is triggered when 

the predefined suction level in the soil profile is reached.  

In this study a 20% leaching fraction was chosen as part of the reference scenario. Exact estimation of the 

leaching fraction depends on several factors, including irrigation water quality (ECw), rootzone salinity (ECSe), 

soil texture, rainfall and crop to be grown. As per different leaching estimation models (Letey et al., 2011), 

maintaining an ECSe/ECw ratio equal to 1 (for salt sensitive crops) requires a LF of 0.3 (Letey et al., 2011). 

However, the salinity management hand book (DERM, 2011) and the Australian and New Zealand irrigation 

water quality guidelines (ANZECC, ARMCANZ, 2000) adopt a common 0.15 LF for categorising irrigation water 

for crop production irrespective of soil type. Therefore, our reference scenario uses a LF of 0.2 as a minimum 

LF requirement to address the irrigation induced salinity issue. 

Note that each scenario was run for historic climate (1970-2017) and future climate (2018-2050). The 

intermediate-emission Representative Concentration Pathway RCP4.5A was used as a single climate future 

rather than a range of futures to keep the overall number of modelling scenarios to a practical number. For 

this region, the median decrease in annual rainfall by 2050 is 6.8% (relative to the 1986-2005 baseline), while 

the median increase in annual maximum daily temperature is 1.3°C. 

A second group of scenarios considered different water qualities, with four modelling scenarios: low salinity 

water using mains water (SA Water), blending of mains and recycled water (1:1 ratio), alternating monthly 

cycles of mains/recycled water, and alternating 6-monthly cycles of mains/recycled water. Other water 

sources such as groundwater (possibly following an Aquifer Storage and Recovery (ASR) scheme) and surface 

water or urban storm water and farm dams were not explicitly included in the simulations as their water 

quality is similar to that of recycled water and mains water, respectively. 

In the third theme specific management scenarios for outdoor cropping were evaluated, i.e. addition of 

gypsum to soil to ameliorate sodicity of soils (four levels were tested) and application of increased leaching 

fractions (three fractions were tested) to remove excess salt from the soil profile. No specific criteria were 

used to determine the gypsum application rate, other than testing whether or not threshold values for 

electrical conductivity, SAR and ESP had not been exceeded. 

Theme four involved greenhouse crops, an assessment of the irrigation requirements of greenhouse crops, 

and the long-term impact of irrigation on soil salinity and sodicity. Management options tested for 

greenhouse cropping included gypsum amendment (four levels) and increased leaching fractions (two levels). 

Theme five addressed lateral solute migration from irrigated fields to streams and how to optimise 

riparian/buffer zone widths to control such solute loads.  

The sixth theme explored effect of recycled water on boron toxicity.    

The final theme discussed effects of climate extremes on crop productivity. 
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In the subsequent sections, summary information is provided for each of these themes; a detailed discussion 

is available in a series of Appendices. The remainder of this chapter is organised as follows: 

• Section 4.2 Estimation of irrigation water requirements for selected crops. 

• Section 4.3 Impact of recycled water on crop yield and soil salinity and sodicity. 

• Section 4.4 Management options associated with long-term irrigation. 

• Section 4.5 Management of greenhouse crops. 

• Section 4.6 Optimising riparian zone widths to control lateral solute migration. 

• Section 4.7 Boron impact associated with use of recycled water.  

• Section 4.8 Climate extremes and their impact. 

4.2 Estimation of irrigation water requirements for selected crops 

4.2.1 Introduction 

Different crops have wide-ranging water requirements to complete their life cycle. For example, annual crops 

need frequent water application for their initial vigorous growth while large horticultural trees may need 

more water due to their large canopy transpiring large amounts of water. Therefore, development of an 

irrigation schedule for a particular crop involves an assessment of the seasonal water requirements as 

influenced by soil, crop and climate conditions. There are various methods and techniques for estimating 

crop water requirements, with each having their pros and cons (e.g. Jones, 2004). Among them are plant and 

soil based methods that are generally adopted to estimate real time crop water requirements. Simulation 

models are commonly used for estimating seasonal irrigation needs of crops, utilising local crop, weather and 

soil based measurements. Modelling of current irrigation water requirements provides a baseline for 

estimating the future impact of climate change on water requirements, as well as on demographic, 

socioeconomic, and technological changes (Döll and Siebert, 2002). 

Among various modelling approaches, FAO-56 (Allen et al., 1998) has been extensively used to derive crop 

evapotranspiration (ETC) and irrigation requirements for different crops across the globe. FAO-56 outlines 

two approaches to estimate crop evapotranspiration, i.e. the single and the dual crop coefficient approach. 

In the single crop coefficient approach, the effect of both crop transpiration and soil evaporation are 

integrated into a single crop coefficient (KC). The FAO-56 dual crop coefficient (DCC) approach (Allen et al., 

1998), describes the relationship between maximal ETC and reference evapotranspiration (ET0) by separating 

the single KC into the basal (transpiration) crop coefficient (KCB), responsible for transpiration, and the soil 

evaporation coefficient (Ke), i.e., KC = KCB+ Ke. The effects of characteristics that distinguish field crops from 

grass are integrated into the basal crop coefficient (KCB). The basal crop coefficient (KCB) is defined as the ratio 

of the crop evapotranspiration over the reference evapotranspiration (ETC/ET0), when the soil surface is dry 

but transpiration is occurring at a potential rate, i.e., water is not limiting transpiration (Allen et al., 1998). 

This approach (DCC) requires numerous climate, soil and crop parameters to estimate the daily crop 

transpiration (TP) and evaporation (ES), as part of developing a seasonal or long-term irrigation schedule for 

different crops. Therefore, the FAO-56 DCC approach is a more advanced method which can be used to 

manage scarce water adequately in water limited environments. This method is particularly suitable for crops 

having incomplete ground cover or where a fraction of the soil surface is wetted by irrigation and exposed to 

radiation (Allen et al., 2005), such as under drip irrigation.  
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The present investigation used the FAO-56 dual coefficient approach for the estimation of irrigation 

requirements of different crops (almond, wine grapes, pistachio, pasture, carrot, onion, potato) for key soil 

groups (calcareous, hard red brown, sand over clay, deep uniform to gradational) in the NAP region, South 

Australia. We used local climate, soil and crop parameters for assessing seasonal water requirements of the 

different crops. The annual irrigation requirements were estimated for the historical (1970-2017) and future 

(2018-2050) climate data for the NAP region. 

4.2.2 Methods and materials 

The FAO-56 procedure (Allen et al., 1998) is a widely used methodology to estimate the crop 

evapotranspiration (ETC), i.e. the composite of crop transpiration (TP) and soil evaporation (ES). The daily 

output of calculated TP and ES for different crops serves as input for the HYDRUS-1D simulator (Šimůnek et 

al., 2016). Key equations used in this method are available from Appendix 6; readers are referred to the main 

publication (Allen et al., 1998) for full details of the procedure. 

The FAO-56 DCC methodology requires a considerable amount of data for crop, soil and climate. Some of the 

basic information such as crop duration, plant height, rooting depth, and depletion factor is available from 

FAO-56 (Allen et al., 1998), which has been reproduced for Australian conditions (Appendix 6). Soil specific 

information (soil texture, field capacity, permanent wilting point, readily available water, and total available 

water) has been drawn from the soil analyses of this report.  

Daily climate data for the historic climate (1970-2017) were obtained from the BOM, Edinburgh RAAF climate 

station (34.71°S, 138.62°E, elevation 17 m), while future climate (2018-2050) data were taken from the 

Goyder Institute climate change median climate projections (Charles and Fu, 2015). The median data is based 

on the downscaled series obtained from the GFDL – ESM2M Global Climate Model (GCM)3, one of the six 

better performing GCMs, which are deemed to provide more realistic inputs for impacts and adaptation 

assessment than those from the six poorer GCMs. Note that the range of possible future climate change is 

larger than that obtained from only using the downscaled results from the six better GCMs. The median 

decrease in annual rainfall predicted for the study area by GCM by 2050 is 6.8% (relative to the 1986-2005 

baseline), the 10th percentile decrease is 8.8%, and the 95th percentile decrease is 3.5% (for the intermediate-

emission Representative Concentration Pathway RCP4.54). A single climate future is used rather than a range 

of futures to keep the overall number of modelling scenarios to a practical number. As a result, the 

simulations present one possible outcome. In addition, a number of other uncertainties are not captured in 

the soil model. However, the tools developed through the project are available to further test additional 

future climate scenarios. 

Analysis of historic and future rainfall and reference evapotranspiration data (from the median downscaled 

projection) shows that the average annual rainfall for the future climate (2018-2050) is expected to reduce 

by 7.7 % as compared to the historic (1970- 2017) climate (Figure 12). The 95th percentile annual rainfall for 

future climate in the study area shows a decrease of 19% relative to the historic climate. In contrast, there 

was a 3.5% increase in the projected average total annual ET0 compared to the historic climate. Note that 

the rainfall distribution function captures the variability between years within the ensemble mean, but does 

not take into account the uncertainty between climate prediction models. 

 
3 NOAA Geophysical Fluid Dynamics Laboratory, USA  
4 RCP4.5 is a scenario of long-term, global emissions of greenhouse gases, short-lived species, and land-use-land-cover which 

stabilizes radiative forcing at 4.5 W m−2 (approximately 650 ppm CO2-equivalent) in the year 2100 without ever exceeding that 

value (Moss et al., 2010).  
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Figure 12. Cumulative distribution functions for annual rainfall under historical and future climate (for the 

intermediate-emission Representative Concentration Pathway RCP4.5). 

4.2.3 Results and discussion 

Typical results for calculated irrigation requirements (IR) are illustrated for almonds. The reader is referred 

to Appendix 6 for a complete overview of results. For historical climate, seasonal IR values for almond varied 

from 960-1022 mm in different NAP soils depending on soil texture and climatic conditions (Figure 13). 

Different soils had different annual IR, with smaller variation for almonds as compared to wine grapes (367-

461 mm, see Appendix 6). With each soil having a different and unique set of hydraulic properties (water 

retention curve and unsaturated hydraulic conductivity function), the water holding capacity or plant 

available water will be different too. Indeed, the total available water for plant uptake was 74, 93, 135 and 

144 mm/m for sand over clay, hard red brown, calcareous, and deep uniform soils, respectively (see Appendix 

6 for details). 

Highest IR values were recorded for sand over clay soil (1022 mm), with average IR values for other soils 

smaller by 4.8, 1.6 and 5.6% in calcareous (Cal), hard red brown (HRB) and uniform to deep gradational (DuG) 

soils, respectively. On the other hand, the average percent increase in mean annual IR for almonds under 

future climate (2018-2050) is 7.2, 6.3, 6.0 and 7.4% in calcareous, hard red brown, sand over clay and deep 

uniform to gradational soils, respectively (Appendix 6). The deep rooted system of almonds (up to 2 m; 
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Phogat et al., 2013) could possibly mine water from much larger depths resulting in a lower sensitivity to soil 

texture and climate change as compared to shallower rooted annual horticulture crops.  

Other studies (Pitt et al., 2017; Phogat et al., 2017) in the NAP have recorded similar amounts of seasonal 

irrigation (889-960 mm) applied to mature almonds in a hard red brown soil. Phogat et al. (2013) calibrated 

and validated a numerical model for the more inland Riverland conditions (sandy soil and drier climate) and 

found that seasonal “deficit” irrigation of 1104 mm (35% less than full irrigation) was adequate for enhancing 

water productivity by 37% as compared to full irrigation (1686 mm). Moreover, the latter irrigation schedule 

increased the leaching losses by 18%; unless such leaching is required to remove excess salts from the soil 

profile, it is considered a loss of water and an unnecessary water (and solute) flux to the groundwater table. 

Other studies have also shown promising results with deficit irrigation of almonds (Goldhamer and Viveros, 

2000; Romero et al., 2004; Girona et al., 2005; Egea et al., 2012; Monks et al., 2017). These results confirm 

almond is a drought resistant crop which is able to withstand frequent periods of low soil moisture 

accompanied by high evaporation rate and high temperature during the growing season (De Herralde et al., 

2003; Rouhi et al., 2007). The results also underscore the importance of continued optimisation of irrigation 

scheduling for site-specific and often unique combinations of soil, climate, groundwater depth, and fruit tree 

variety. 

 

 

Figure 13. Long-term (1970-2050) annual rainfall and seasonal irrigation schedule for almonds estimated by the FAO-

56 dual crop coefficient approach in different soils (Cal-Calcareous, HRB-Hard Red Brown, SoC-Sand over clay, DuG-

Deep uniform to gradational). Solid black line represents the long-term average annual trend for irrigation 

requirement. 

 

The main findings around irrigation requirements considering all crops and soils are summarised as follows 

(also see Figure 14): 

• The estimated overall average annual IR during the historical and future climate was, 

respectively: 

o 407 and 427 mm for wine grapes,  

o 989 and 1055 mm for almonds,  
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o 798 and 828 mm for pistachios,  

o 1041 and 1120 mm for pastures (mixed),  

o 1017 and 1085 mm for carrots (winter and summer),  

o 655 and 718 mm for onions, and 

o 573 and 628 mm for potatoes.  

• Accounting for future climate change for the NAP region resulted in a 3.5-11.0% increase in the 

annual IR of different crops.  

• Irrigation requirements in sand over clay soils for different crops was 3.1-21.3, 1.2-7.8, and 3.7-

24.3%, higher than in calcareous, hard red brown and deep uniform to gradational soil, 

respectively. 

A detailed discussion of the findings for different crops is available from Appendix 6. 

 

 

Figure 14. Summary of irrigation requirements for all crops and soils considered in this study. Historic climate (1970-

2017) and future climate (2018-2050). Increase in irrigation requirement for future climate is indicated on green 

panels. Error bars represent year-to-year variability in climate. Soils shown are: Cal-Calcareous, HRB-Hard Red Brown, 

SoC-Sand over clay, DuG-Deep uniform to gradational. 

 

4.2.4 Conclusion 

The estimated average annual irrigation requirement (IR) for both historic and future climate was highly 

dependent on crop and soil type (Table 13). Variation between crops for the same soil was higher than 
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variation between soils for the same crop. In other words, for the soils investigated, the crop type is the more 

important factor in determining irrigation requirements. Therefore, in estimating irrigation requirements one 

should put sufficient effort on characterising crop factors such as KC and its evolution throughout the year, 

rooting depth and root distribution. 

Results further revealed that for all crop types, sand over clay soils had the overall largest irrigation 

requirement compared to all other soils. Compared to sand over clay, the annual average IR values in 

calcareous, hard red brown and deep uniform to gradational soil were smaller by 3.0-17.6, 1.2- 7.3, and 3.5-

19.6%, respectively. Deep uniform to gradational soil had the lowest irrigation requirement; this was true for 

all crops. Pasture was the crop with the highest average annual IR, irrespective of soil type. Wine grapes 

required the least amount of irrigation (Table 13).  

Projected future climate data for the NAP region showed a significant influence on the annual IR for different 

crops. The average percent increase in IR in different soils was 3.5-5.8 (grapes), 6.0-7.2 (almonds), 3.0-4.5 

(pistachios), 7.0-8.4 (pasture), 6.2- 7.4 (carrots), 9.2-10.3 (onions), and 8.8-11.0% (potatoes), depending on 

the soil textures and crop stress tolerance (Table 13). The results suggest that annual horticultural crops could 

face more irrigation related risks under the future climate as compared to deep rooted perennial horticultural 

crops. 

Table 13. Summary of irrigation requirements (mm) for current and future climate. Soils shown are: Cal-Calcareous, 

HRB-Hard Red Brown, SoC-Sand over clay, DuG-Deep uniform to gradational. 

CROPS CURRENT CLIMATE (1970-2017) FUTURE CLIMATE (2018-2050) 

CAL HRB SOC DUG CAL HRB SOC DUG 

Grapes 376 425 461 367 398 446 477 388 

Almonds 968 1004 1022 960 1038 1068 1083 1031 

Pistachios 784 810 820 776 819 837 845 810 

Pasture 1022 1061 1089 993 1103 1137 1165 1074 

Carrot 1005 1027 1040 998 1077 1091 1104 1073 

Onion 641 663 686 631 705 723 750 696 

Potato 547 592 619 532 604 646 674 591 
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4.3 Impact of recycled water on crop yield, soil salinity and sodicity 

4.3.1 Introduction 

The finite element, multicomponent major ion geochemistry module UNSATCHEM implemented in the soil 

model HYDRUS-1D (Šimůnek et al., 2016) was used to evaluate the impact of long-term (2018-2050) use of 

recycled water (RW) for irrigating perennial horticulture (almonds, pistachios), viticulture (wine grapes), 

annual horticulture (carrot, onion and potato), and pasture crops in different NAP soils (calcareous, hard red 

brown, sand over clay and deep uniform to gradational). Related soil hydraulic, soil solution and exchange 

data were determined from 20 soil profiles sampled from the NAP region (Appendix 1, 2). The long-term 

(1970- 2050) daily potential transpiration (TP), evaporation (ES), and the seasonal irrigation schedule for 

different crops were developed following the FAO-56 dual crop coefficient approach (Allen et al., 1998) 

utilising historic and climate change data for the NAP region and using local crop specific information 

(Appendix 6). An initial warming up period used historic climate data for 48 years (from July 1970- June 2018) 

with rainwater chemical composition used for both rain events and scheduled irrigation (as per Appendix 6). 

For the subsequent period (July 2018-June 2050), the statistically downscaled climate projections for South 

Australia (Charles and Fu, 2015) were used together with irrigation applied to different crops based on RW. 

The model predicted the impact of long-term use of RW for irrigation on soil health using the following soil 

chemical metrics: pH, ECSW, SAR, and ESP. 

4.3.2 Methods and materials 

The HYDRUS-1D simulator is the most advanced vadose zone model which appropriately couples unsaturated 

water, heat transport, major ion chemistry, and solute transport (Šimůnek et al., 2016). Simulations for all 

crops were performed in a 200 cm-deep domain divided into 100 nodes. The nodes were distributed to 

ensure smaller discretization at the surface where major water and solute dynamics processes take place. 

The domain was divided into 5 depth layers (0-15, 15-30, 30-60, 60-100 and 100-200 cm) to accommodate 

measured textural heterogeneity in the key soil groups (calcareous, hard red brown, sand over clay, and deep 

uniform to gradational) in the NAP area.  

At the soil surface an atmospheric boundary with surface run off was imposed – allowing no ponding on the 

surface - and free drainage was applied at the bottom boundary. For solute transport, a concentration flux 

boundary was assumed at the surface and a zero concentration boundary was imposed at the bottom to 

allow normal solute mass transfer with drainage water. With daily input values for rainfall, ES, and EP for 

different crops, the soil water balance was initialised during the warming up period. Measured soil solution 

and exchange parameters were assumed as initial condition for the multi component solute transport 

module UNSATCHEM (for details of parameters see Appendix 2).  

Water quality data for different available water resources in the NAP region including recycled water (RW) 

from the Bolivar water treatment plant were obtained from Awad et al. (2019). Mean seasonal composition 

of recycled water was estimated from raw data from 2002-2017. The values for Ca, Mg, Na, K, Alk(alinity), 

SO4, and Cl used for the modelling study are given in Table 14. Based on the chloride concentration, the 

DAFF/RW quality falls in the medium category for salinity rating in Australia (ANZECC and ARMCANZ, 2000) 

which means that moderately tolerant crops could be grown using DAFF water as an irrigation source. Also 

based on the sodium concentration, moderately tolerant crops can be grown. Rainwater composition was 

obtained from Cresswell et al. (2010) for the Adelaide region (Table 14). Among all the water types shown in 

Table 14, mains water represents the best water quality. Blended water represents mixing of DAFF and SA 

Water (mains water) in a 1:1 proportion. 
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Table 14. Quality of irrigation waters used in the modelling simulations (based on Awad, 2019). 

SEASON Ca  Mg Na K ALK SO4 Cl 

DAFF/RW WATER (Meq/L) 

Autumn 1.85 2.44 11.25 1.02 1.80 3.77 10.27 

Winter 1.88 2.59 11.72 0.94 1.90 3.73 10.71 

Spring 2.02 3.13 13.62 0.97 2.09 3.76 12.62 

Summer 1.92 2.84 13.12 1.04 2.08 3.77 12.44 

Average 1.92 2.75 12.43 0.99 1.97 3.76 11.51 

OTHER WATER SOURCES (MEQ/L) 

Rain water 0.17 0.11 0.41 0.01 0.16 0.08 0.51 

SA Water 0.73 0.61 2.3 0.10 0.03 0.29 2.32 

1:1 blend 1.32 1.68 7.36 0.55 1.00 2.02 6.92 

 

4.3.3 Results and discussion 

Typical results for calculated effects of irrigation on soil chemical parameters and crop response are 

illustrated on the basis of almonds (Figure 15). The reader is referred to Appendix 6 for a complete overview 

of results. Periodic changes in pH, ECSW, SAR and ESP in the soil profile following long-term use of recycled 

water in almonds is shown in Figure 16. The pH of all soil profiles remained in the alkaline range and showed 

little impact in response to the use of recycled water irrigation. Profile average pH at the end of the simulation 

(year 2050) varied in a narrow range (8.2-8.3) in all the soils (Figure 15, first column). A soil pH higher than 8 

can reduce the micro-nutrient availability to the crop, which in turn can impact the normal growth and 

development of almonds. The extent of soluble salts (ECSW) in the soils gradually increased as a result of 

recycled water irrigation use (Figure 15, second column). Soil solution salinity in the upper soil layer (0-15 

cm) remained below the almond tolerance threshold (ECSW = 3.3 dS/m) for the initial 15 years of irrigation. 

At deeper depths (> 80 cm), the ECSW increases quickly and always remained >5 dS/m in all the soils after 7 

years of irrigation (Figure 15f, j, n, r). The annual profile average ECSW remained almost constant and varied 

in a narrow range of 4-5 dS/m in all the soils (Figure 16). The salinity build up in the profile was slightly lower 

in hard red brown (hrb) as compared to other soils. Almonds are known to be sensitive to salinity and ECSW 

values > 3.3 dS/cm can affect the normal growth and development, and therefore yield. Therefore, leaching 

of soluble salts with good water quality is essential to maintain the effective root zone salinity below the crop 

threshold for an optimal yield. 

The low initial SAR of the soil solution (Figure 16) for all the soils increased rapidly with the application of 

recycled water. The SAR values were within 10 to 20 in all the soils at the end of the simulation showing 

slightly higher values for deep uniform to gradational soils (dug) than others. High SAR values suggest that 

the long-term use of recycled water irrigation can induce a sodicity hazard which could have severe impact 

on the sustainable almond production. 

Contrary to ECSW and SAR, the initial ESP in the soils was much higher than the threshold (> 6%) which could 

adversely affect the water movement in the soils (Figure 16). Hard red brown (hrb) and calcareous soils (cal) 

showed comparatively higher ESP (>35%) than others. Normally, shallow depths had lower ESP as compared 

to deeper layers. For example, the average initial ESP in hard red brown soils (hrb, Figure 15) in the surface 

layer (0-15 cm) was 17.7% which increased to 56.6% in the 120-200 cm layer at the end of the simulation 

showing a significant response to the use of recycled water. Similarly, the initial profile average ESP (21.8%) 
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in calcareous soils (cal) doubled whereas corresponding ESP in sandy soils (soc) increased roughly 3 times 

(28.7%) due to the use of recycled water irrigation for 32 years (Figure 16). Similarly, the initial profile average 

ESP (29.6%) in hard red brown soil increased to 56.6% while deep uniform to gradation soil showed an 

increase of 2.5 times (from 12.8 to 32.3%) in the ESP (Figure 16).  

These results show that recycled water has a tendency of increasing Na content on the soil exchanger. The 

increased Na contents on the soil exchanger, compared to Ca and Mg, may induce swelling and dispersion of 

clay and organic matter, thus, impacting the hydraulic movement of the water in the soil and degrade the 

soil structure. High ESP may induce waterlogging conditions in the soil which restrict the water movement in 

the soil, decrease the oxygen level and ultimately impact the plant growth. Therefore, soil amendments such 

as gypsum, compost or other organic sources would be required to bring down the ESP and providing a 

suitable environment for normal crop growth. 

The main findings around impacts from irrigation considering all crops and soils are summarised as follows: 

• Soil pH by 2050 was nearly identical for all soil depths across all soils. 

• The terminal (at year 2050) soil profile salinity (ECSW) as a result of RW irrigation ranged from 2.9 at 

the soil surface to 3.95- 9.45 dS/m at 2 m depth across all soils and crops. The depth distribution of 

ECSW was different for different crop types. 

• Potential yield of salt sensitive crops such as annual horticulture and almonds was estimated to be 

reduced by 4-32% due to the increased salinity level in the soil. 

• The model predicted an increase in the SAR as a result of RW irrigation to different crops. Average 

initial (2018) profile SAR values (0.8-3.6) were increased to 12.1-19.4 in different soils at year 2050 

and SAR in the soil solution was depth dependent. 

• After 32 years of irrigation with RW, the average soil ESP also increased to 43.7, 51.0, 28.4, and 35.0% 

in calcareous, hard red brown, sand over clay and deep uniform to gradational soils, respectively. 

Different crops developed different ESP depth distributions. 

• Threshold relationships between SAR and ESP for each soil were developed. These relationships 

revealed that a SAR of 4, 3.5, 6 and 3 for calcareous, hard red brown, sand over clay and deep uniform 

to gradational soils, respectively, would be able develop a critical ESP (>6) which can lead to adverse 

impacts in the soils affecting normal crop growth. 

• High SAR (12.1-19.4) and ESP (23.9-51.5%) build up in the soils could adversely affect soil structural 

stability and hydraulic movement in the soil which can severely impact the sustainable crop 

production. 

The simulated annual profile average salinity (ECSW) for different crops was used to estimate the reduction in 

the potential yield (Table 15). The salinity impact for Brassicas (cauliflower and cabbage) was estimated based 

on the calculated salinity for carrots since the water use in Brassicas and winter carrots is almost similar. The 

yield reductions for the 10th %tile, mean and 90th %tile profile average salinity for different soils are 

summarised in Table 15. It can be seen that pistachios and pasture (rye grass) had no impact of increased soil 

salinity because they are salt tolerant crops. These crops could be potential viable options for future 

cultivation in the NAP area. Yield reduction in almonds due to recycled water use varied from 9-22% in 

different soils; the yield reduction in wine grapes is comparatively low (0-5.7%) due to the higher salt 

tolerance for the latter crop (Appendix 3). 
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Figure 15. Model predicted average pH, soil water electrical conductivity ECSW (dS/m), sodium adsorption rate (SAR) 

and exchangeable sodium percentage (ESP) in different soils (cal = calcareous soils, hrb = hard red brown, soc = sand 

over clay, and dug = deep uniform to gradational) during 2018-19 (a, b, c, d), 2025-26 (e, f, g, h), 2033-34 (i, j, k, l), 

2041-42 (m, n, o, p), and 2049-50 (q, r, s, t) under almond cultivation. 

 

The discussion around yield here compares the reduction vis-à-vis overall mean salinity. However, detailed 

reduction in the relative yield of tests crops over the years is included in Appendix 7 (Table 5, Figure 24). The 

yield reduction varied from 6-35% in various crops depending on their salinity tolerance level and the salinity 

build up in the soils. Notably, such extent of yield loss is not a limited effect. Additionally, increased salts in 
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the soils would need more water to leach them out of the crop rootzone, thus incurring increased financial 

burden for buying more water. On top of that the main objectives of this study were to assess the extent of 

loss in the potential yield due to the use of recycled water and not aimed at assessing the economic 

implications of such interventions.  

 

Figure 16. Model simulated annual profile average a) pH, b) soil water electrical conductivity ECSW (dS/m), c) sodium 

adsorption ratio (SAR), and d) exchangeable sodium percentage (ESP) in different soils (cal = calcareous soils, hrb = 

hard red brown, soc = sand over clay, and dug = deep uniform to gradational) for DAFF water irrigated almond during 

2018-2050. 

Comparing almond yield obtained in the NAP region (Pitt et al., 2017) and the Riverland region in South 

Australia (Phogat et al., 2013; average yield of 8 years), revealed that the almond yield at the NAP site was 

only 50% of that in the Riverland. The major difference at the two sites was the water quality used for 

irrigation, climate (rainfall, ET) and type of soils (more sandy in Riverland).  In the Riverland, almonds are 

irrigated with River Murray water which has a much lower salinity (0.4 dS/m; Phogat et al., 2018a) than the 

recycled water, groundwater or blended water (0.8- 1.9 dS/m; Phogat et al., 2018b) used in the NAP region. 

The current hypothesis is that the use of RW at the NAP site (Pitt et al., 2017) with its high soil salinity (soil 

profile ECSe = 2-7.5 dS/m) might have contributed greatly to the reduction in the almonds yield.  

The potential yield reduction in clover pasture crop was observed to range from 12 to 23.8%. Therefore, 

under mixed pasture conditions (rye grass and clover), RW irrigation potential can impact the clover crop. 

Similarly, among annual horticultural crops, almost one-third of the potential yield for onion (23.5-34.9%) 

and potato (23.5- 34.9%) could be lost due to the high soil salinity. Corresponding numbers for carrot and 

brassicas ranged from 19.6-32.4 and 5.8-14.7%, respectively.  

More importantly, crop salinity impacts are influenced by climate, irrigation and agronomic management 

(Rhoades and Loveday, 1990). Generally, most vegetable crops suffer a 10% yield reduction at an ECSe of 2.7 

± 0.8 dS/m (ECSW ≈ 2 ECSe) (ANZECC and ARMCANZ, 2000). Therefore, appropriate management of irrigation 

induced soil salinity is essential for sustainable crop production in the NAP soils. 
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Table 15. Reduction in the potential yield (%) of different crops with profile average salinity (10th %tile, mean, 90th 

%tile) build up in different soils (Calcareous (Cal), Hard red brown [HRD), Sand over clay (SoC), Deep uniform to 

gradational (DuG)] in relation to recycled water use for irrigation (future climate). Coloured cells indicate the risk 

level to reduction in crop yield: green = low risk; amber = medium risk; red = high risk.  

PERCENTILE SOIL ALMOND WINE 
GRAPE 

PISTA-
CHIOS 

CARROT ONION POTATO BRASSICAS PASTURE 

CLOVER RYE 

10th % Cal 15.1 0.0 0.0 22.9 26.8 23.4 8.1 17.2 0.0 

HrB 9.1 0.0 0.0 19.6 24.9 15.2 5.8 12.0 0.0 

SoC 11.5 0.0 0.0 22.2 23.5 0.0 7.6 13.8 0.0 

DuG 15.0 0.0 0.0 24.4 27.5 5.9 9.2 18.7 0.0 

Mean Cal 17.6 1.7 0.0 27.1 30.5 34.5 11.0 19.2 0.0 

HrB 11.2 0.0 0.0 23.1 27.5 25.1 8.3 13.9 0.0 

SoC 15.1 0.0 0.0 27.7 28.5 0.6 11.4 16.1 0.0 

DuG 17.9 0.0 0.0 27.4 30.7 8.0 11.2 20.1 0.0 

90th % Cal 22.2 5.7 0.0 31.1 33.6 42.9 13.8 22.9 0.0 

HrB 15.2 2.5 0.0 26.8 31.4 32.1 10.8 17.1 0.0 

SoC 20.0 1.6 0.0 32.4 34.9 3.8 14.7 19.9 0.0 

DuG 22.2 2.3 0.0 31.2 33.2 10.5 13.8 23.8 0.0 

4.3.4 Conclusion 

This study used the multicomponent UNSATCHEM module of HYDRUS-1D to evaluate the impact of long-

term (2018-2050) use of recycled water (RW) for irrigating wine grapes, almonds, pistachios, pasture, carrot, 

onion and potato crops in key NAP soils. The simulations revealed that irrigation with recycled water can 

potentially increase the soil solution salinity (ECSW), SAR and ESP in the soil. The average terminal ECSW in the 

soil profile under different crops in the 10th to 90th %tile range varied from 2.9-10.5 dS/m. Usually, the average 

EC in the upper soil layers (<30 cm) remained roughly below 4 dS/m for almonds, wine grapes, pistachios and 

pasture while under annual horticulture (carrot, onion, potato), salinity rose between 4.87 and 9.5 dS/m due 

to upward movement of salts during the cover crop season. Average profile soil salinity at lower depths (> 30 

cm) ranged from 3.6-10.8 dS/m under all crops including pasture, viticulture and perennial horticulture.  

Increased salinity in the soil reduces the potential yield in almond by 12-20% in different soils, with higher 

yield loss in hard red brown soils, followed by calcareous soils.  No yield loss was observed in wine grapes, 

perennial pastures and pistachios as they are relatively salinity tolerant crops. Annual horticulture crops 

(carrots, onions, potatoes, brassicas) showed yield losses from 4-32% due the increased salinity. 

Use of RW for irrigation also has a strong impact on the soil solution and exchange dynamics, exemplified by 

an increase in the soil SAR. After 32 years of irrigation, the simulated profile average values of SAR were 17.4, 

15.8, 15.5, and 16.3 for calcareous, hard red brown, sand over clay and deep uniform to gradational soils, 

respectively. These values are higher than the threshold SAR reported in many previous studies which are 

associated with an increase in the ESP of the soils. The model predicted profile average ESP in the soil 

increased by 22.7, 21.6, 19.4, and 10.5% in calcareous, hard red brown, sand over clay and deep uniform to 

gradational soils, respectively. These values are much higher than the accepted ESP thresholds (ESP > 6%) for 

Australian soils. Thus, it is suggested that high SAR and ESP build up in the soils as a result of RW irrigation to 

different crops could adversely impact the physical properties of soils. This could lead to clay dispersion, 

porosity and hydraulic conductivity reduction, and overall loss of structural stability of the soils which can 
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severely impact the sustainable crop production. Therefore, adequate management options must be put in 

place so that adverse impacts of use of recycled water can be reduced realising long-term sustainable crop 

production. 

4.4 Management options associated with long-term irrigation 

4.4.1 Introduction 

Long-term use of recycled water for irrigation in arid and semiarid regions usually changes the soil solution 

composition and soil exchange characteristics which in turn enhances the risk for salinity and sodicity hazards 

in soils. We focused on developing alternative management options which can reduce the potentially harmful 

impact of use of recycled water for long-term irrigation in the NAP region. The HYDRUS-1D multi-component 

module UNSATCHEM was used to evaluate the impact of long-term (2018- 2050) use of irrigation waters with 

different chemical composition: good quality low salinity (175 mg/L) water (GW), recycled DAFF water with 

1200 mg/L salinity (RW), blending GW and RW in 1:1 proportions (B), and alternate use of GW and RW for 

monthly (Alt1) and half yearly (Alt6) cycles. Further management options considered include different levels 

of annual gypsum application (0, 1.7, 4.3, and 8.6 t/ha soil) in sand over clay (SoC), calcareous (Cal) and hard 

red brown (HRB) soils. Crops considered in the simulations include annual horticultural crops (potato), wine 

grapes and perennial horticultural crops (almonds). A further management option involves applying an 

increased leaching fraction (LF) (0.3, 0.4, and 0.5) in Cal and HRB soils for RW and B irrigation water types. A 

very high gypsum application rate of 12.9 t/ha was also run in HRB soils to evaluate its ability to reduce impact 

in clay soils. A total of 77 scenarios were undertaken to study the impact of various management options for 

different NAP soils. 

4.4.2 Methods and materials 

The model was executed for different water quality scenarios listed in Table 16, for sand over clay (SoC), 

calcareous (Cal), and hard red brown (HRB) soils. In these soils, an annual horticultural crop (potato), 

viticulture and almonds were taken as the test crops for evaluating the impacts on a range of crops grown in 

the NAP region. Detailed information on the individual scenarios is given in Appendix 8. 

In calcareous soils, additional scenarios were tested to evaluate the impact of different leaching fractions (LF) 

(0.3, 0.4, 0.5), particularly for recycled water and blending irrigation options. In hard red brown soils, 

additional scenarios were tested involving a much higher annual gypsum application (12.9 t/ha). Also in hard 

red brown soils, additional scenarios were run to address the occurrence of high subsoil sodicity in the 

collected soil profiles from the NAP. These scenarios were carried out to evaluate the impact of different 

leaching fractions (LF) (0.3, 0.4, 0.5), particularly for recycled water and blending irrigation options. 

Most of the input parameters required for executing the management scenarios using HYDRUS-1D with the 

UNSATCHEM module have been described in Appendix 7. We tested a new software module implemented 

in HYDRUS-1D specifically for this study, i.e. yearly application of gypsum in long-term modelling scenarios. 

If the soil is sodic, gypsum is commonly added as a cheap source of calcium which replaces sodium with 

calcium on the solid phase (e.g. clays) and therefore reverses the sodicity or structure breakdown. In the 

model, the gypsum is allowed to dissolve over time according to its solubility and the chemical composition 

of the pore water. Therefore, simulations were conducted with annual additions of different levels of gypsum 

to optimise the application rate in different NAP soils.    
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Table 16. Different water quality and gypsum application scenarios performed in various soil-crop combinations. RW 

= recycled DAFF water, GW = good quality low salinity water, LF = leaching fraction, B = blended GW and RW in 1:1 

proportion. 

SCENARIO 
NUMBER 

WATER QUALITY SOIL TYPE CROP GYPSUM 
APPLICATION (T/HA) 

SAND OVER CLAY (SOC) SOILS UNDER POTATO CULTIVATION 

1 DAFF water, RW Sand over clay potato 0 

2 DAFF water, RW Sand over clay potato 1.7 

3 DAFF water, RW Sand over clay potato 4.3 

4 DAFF water, RW Sand over clay potato 8.6 

5 Good/SA water, GW Sand over clay potato 0 

6 Good/SA water, GW Sand over clay potato 1.7 

7 Good/SA water, GW Sand over clay potato 4.3 

8 Good/SA water, GW Sand over clay potato 8.6 

9 Blend RW and GW in 1:1, B Sand over clay potato 0 

10 Blend RW and GW in 1:1, B Sand over clay potato 1.7 

11 Blend RW and GW in 1:1, B Sand over clay potato 4.3 

12 Blend RW and GW in 1:1, B Sand over clay potato 8.6 

13 RW & GW in monthly cycles Sand over clay potato 0 

14 RW & GW in monthly cycles Sand over clay potato 1.7 

15 RW & GW in monthly cycles Sand over clay potato 4.3 

16 RW & GW in monthly cycles Sand over clay potato 8.6 

17 RW & GW in half yr cycles Sand over clay potato 0 

18 RW & GW in half yr cycles Sand over clay potato 1.7 

19 RW & GW in half yr cycles Sand over clay potato 4.3 

20 RW & GW in half yr cycles Sand over clay potato 8.6 

CALCAREOUS SOILS (CAL) UNDER VITICULTURE CULTIVATION 

21 DAFF water, RW Calcareous wine grapes 0 

22 DAFF water, RW Calcareous wine grapes 1.7 

23 DAFF water, RW Calcareous wine grapes 4.3 

24 DAFF water, RW Calcareous wine grapes 8.6 

25 Good/SA water, GW Calcareous wine grapes 0 

26 Good/SA water, GW Calcareous wine grapes 1.7 

27 Good/SA water, GW Calcareous wine grapes 4.3 

28 Good/SA water, GW Calcareous wine grapes 8.6 

29 Blend RW and GW in 1:1, B Calcareous wine grapes 0 

30 Blend RW and GW in 1:1, B Calcareous wine grapes 1.7 

31 Blend RW and GW in 1:1, B Calcareous wine grapes 4.3 

32 Blend RW and GW in 1:1, B Calcareous wine grapes 8.6 
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SCENARIO 
NUMBER 

WATER QUALITY SOIL TYPE CROP GYPSUM 
APPLICATION (T/HA) 

SAND OVER CLAY (SOC) SOILS UNDER POTATO CULTIVATION 

33 RW & GW in monthly cycles Calcareous wine grapes 0 

34 RW & GW in monthly cycles Calcareous wine grapes 1.7 

35 RW & GW in monthly cycles Calcareous wine grapes 4.3 

36 RW & GW in monthly cycles Calcareous wine grapes 8.6 

37 RW & GW in half yr cycles Calcareous wine grapes 0 

38 RW & GW in half yr cycles Calcareous wine grapes 1.7 

39 RW & GW in half yr cycles Calcareous wine grapes 4.3 

40 RW & GW in half yr cycles Calcareous wine grapes 8.6 

41 RW + 0.3LF Calcareous wine grapes 8.6 

42 RW + 0.4LF Calcareous wine grapes 8.6 

43 RW + 0.5LF Calcareous wine grapes 8.6 

44 B + 0.3LF Calcareous wine grapes 8.6 

45 B + 0.4LF Calcareous wine grapes 8.6 

46 B + 0.5LF Calcareous wine grapes 8.6 

HARD RED BROWN (HRB) SOILS UNDER ALMOND CULTIVATION 

47 DAFF water, RW HRB  almond 0 

48 DAFF water, RW HRB almond 1.7 

49 DAFF water, RW HRB almond 4.3 

50 DAFF water, RW HRB almond 8.6 

51 DAFF water, RW HRB almond 12.9 

52 Good/SA water, GW HRB almond 0 

53 Good/SA water, GW HRB almond 1.7 

54 Good/SA water, GW HRB almond 4.3 

55 Good/SA water, GW HRB almond 8.6 

56 Good/SA water, GW HRB almond 12.9 

57 Blend RW and GW in 1:1, B HRB almond 0 

58 Blend RW and GW in 1:1, B HRB almond 1.7 

59 Blend RW and GW in 1:1, B HRB almond 4.3 

60 Blend RW and GW in 1:1, B HRB almond 8.6 

61 Blend RW and GW in 1:1, B HRB almond 12.9 

62 RW & GW in monthly cycles HRB almond 0 

63 RW & GW in monthly cycles HRB almond 1.7 

64 RW & GW in monthly cycles HRB almond 4.3 

65 RW & GW in monthly cycles HRB almond 8.6 

66 RW & GW in monthly cycles HRB almond 12.9 

67 RW & GW in half yr cycles HRB almond 0 
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SCENARIO 
NUMBER 

WATER QUALITY SOIL TYPE CROP GYPSUM 
APPLICATION (T/HA) 

SAND OVER CLAY (SOC) SOILS UNDER POTATO CULTIVATION 

68 RW & GW in half yr cycles HRB almond 1.7 

69 RW & GW in half yr cycles HRB almond 4.3 

70 RW & GW in half yr cycles HRB almond 8.6 

71 RW & GW in half yr cycles HRB almond 12.9 

72 RW + 0.3LF  HRB almond 8.6 

73 RW + 0.4LF HRB almond 8.6 

74 RW + 0.5LF HRB almond 8.6 

75 B + 0.3LF HRB almond 8.6 

76 B + 0.4LF HRB almond 8.6 

77 B + 0.5LF HRB almond 8.6 

4.4.3 Results and discussion 

Typical results for calculated effects of management options on soil chemical parameters are illustrated for 

sand over clay soils. The reader is referred to Appendix 8 for a complete overview of results, including those 

for calcareous soils and hard red brown soils. In sand over clay soils, the average pH values at different soil 

depths without gypsum amendment were usually around 7.64 to 8.10 for different water quality scenarios 

(Figure 17). Simulated pH values were comparable with the measured values using a 0.01M CaCl2 solution 

(6.25-8.32), based on different soil depths. Irrigation with RW resulted in relatively higher pH values at all 

depths as compared to GW, blending and cyclic water use scenarios. The pH decreased with annual addition 

of gypsum: application rates of 1.7, 4.3 and 8.6 t/ha soil reduced the pH by 2.03, 3.95, and 4.23%, 

respectively. These are, albeit, very small changes. The pH values in the gypsum amended soils may not have 

any adverse impact on the crop nutrition as these values fall in the adequate pH range for optimal 

bioavailability (Roques et al. 2013).  

The average annual ECSW values without gypsum amendment were lower than the potato threshold (ECSW = 

3.7 dS/m) in almost all depths under different irrigation water quality scenarios (Figure 17). Hence, RW 

irrigation including its blending (B) and cyclic options (Alt1 and Alt6) can be effectively used for potato 

production without any adverse salinity build up in the soils. However, the annual gypsum application at a 

rate of 1.7, 4.3 and 8.6 t/ha soil across different water quality scenarios has increased the concentration of 

soluble salts in the soil by 53-77, 40-60, and 31- 54%, respectively, as compared to the zero gypsum scenario. 

As gypsum is a moderately soluble salt, increased amounts of salt will occur in the soil on account of gypsum 

application. These salts could be leached below the root zone later in the season, and thus would not 

contribute to the overall salinity increase. These observations justify the use of higher leaching fractions (i.e. 

higher than the reference 20% LF), although this was not tested here.  

The time series of annual values of ECSW in the 0-15, 30-60, and 90-120 cm soil depth for different irrigation 

qualities and their blending and cyclic use options with 4.3 t/ha annual gypsum application are shown in 

Figure 18. The ECSW values at the 0-15 cm soil depth were higher than the potato threshold (ECSW = 3.4 dS/m, 

based on a threshold ECSe = 1.7 dS/m) under all qualities of irrigation water. The ECSW was much higher under 

RW irrigation when the overall average values ranged from 4.1-6.6 dS/m. Note that this is still lower than the 

tolerance thresholds for moderately tolerant and tolerant crops thresholds (ANZECC and ARMCANZ, 2000). 

Irrigation with good water, blending and cyclic use yielded lower soil solution salinity than irrigation with RW 

water.  
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At 30-60 cm depths, though the annual ECSW was still higher than the potato threshold, its annual fluctuations 

were much lower as compared to the upper soil depth. Similarly, the annual ECSW reduced at 90-120 cm and 

remained close to the potato threshold. Stevens et al. (2003) also showed a similar EC (ECSe = 2.8 ≈ ECSW of 

5.6 dS/m) in the upper soil (20 cm) with recycled water irrigation in the NAP region. Most vegetable crops 

(except zucchini) suffer around 10% yield reduction at an ECSe of 2.7± 0.8 dS/m (ANZECC and ARMCANZ, 

2000). This indicates that the extent of salinity development with RW may have a limited impact on the crop 

yield. Stevens et al. (2003) proposed an ECSe of 3 dS/m as a critical value for vegetable cultivation in NAP soils. 

These results further suggests that a leaching fraction (20%) adopted in the present study as a reference, is 

able to keep the root zone salinity near the potato crop threshold in SoC soil. Rhoades and Loveday (1990) 

suggested a leaching fraction of 20-50% as an ideal fraction under recycled water irrigation. While higher 

leaching fractions can further reduce the ECSW from the crop root zone, it can also increase the total salt load 

to groundwater. 
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Figure 17. Simulated spatiotemporal average values of pH, soil water electrical conductivity ECSW (dS/m), sodium 

adsorption ratio (SAR) and exchangeable sodium percentage (ESP) in sand over clay soils at 0-15 cm, 30-60 cm, and 

90-120 cm soil depths under long-term (2018-2050) irrigation of potato with different water qualities (recycled water, 

RW; Good/SA water, GW; blending RW and GW in 1:1 proportion, B; RW and GW used in monthly cycles, Alt1; RW and GW 

used half yearly cycles, Alt6) along with annual gypsum application of 0 (G0), 1.7(G1), 4.3 (G2), and 8.6 (G3) t/ha soil. 

Threshold values for ECSW, SAR and ESP are shown as blue lines. 
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The average SAR values in 0-15 cm soil without gypsum amendment ranged from 5.6-11.8, which is highest 

for RW irrigation and lowest for GW irrigation (Figure 17). Overall, these values increased at 30-60 cm by 3.2% 

but decreased at 90-120 cm by 1.9%. Average SAR values were higher than the sand over clay soil threshold 

(SAR threshold = 6, see Appendix 75). The SAR values decreased sharply with the addition of gypsum at 1.7 

t/ha (10 meq/kg soil) annually. This resulted in a 30% reduction in the original SAR values. However, SAR 

values in some treatments and depths were still maintained at higher levels than the threshold. Further 

increase in the gypsum application to 4.3 t/ha soil resulted in more than 50% reduction in the SAR, which 

were comparable to sensitive crop thresholds (ANZECC and ARMCANZ, 2000) in light textured soils. Further 

increase in the gypsum application to 8.6 t/ha only reduced the SAR values by another 2.35% compared to 

the 4.3 t/ha application. Therefore, an application of 8.6 t/ha in light textured soils may not be an economical 

proposition as compared to 4.3 t/ha soil in the NAP region, in addition to increasing the salt load to shallow 

groundwater and connected surface waters.  

 

 

Figure 18. Impact of long-term (2018-2050) use of different qualities of irrigation waters (recycled water, RW; Good/SA 

water, GW; blending RW and GW in 1:1 proportion, B; RW and GW used in monthly cycles, Alt1; RW and GW used half 

yearly cycles, Alt6) along with annual gypsum application of 4.3 t/ha (G2) on the annual soil water electrical 

conductivity ECSW (dS/m) build up at a) 0-15, 30-60, and c) 90-120 cm depth in sand over clay soil (S4) under potato 

cultivation. Threshold values for ECSW are shown as green lines. 

 

Annual SAR values with 4.3 t/ha gypsum amendment varied between 2.57 to 9.76 in the 0-15 cm soil depths 

(Figure 19). The mean value (6.8) was comparable to the threshold value for SoC soils (SAR threshold = 6, see 

 
5 The soil specific SAR threshold was derived from the soil specific SAR-ESP relationship, by assuming the same ESP 

threshold for all soils, i.e. 6%, to indicate a sodic soil consistent with Northcote and Skene (1972).  
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Appendix 7). Irrigation with other water qualities (blending and cyclic use) coupled with 4.3 t/ha gypsum 

application showed much lower annual SAR values than the threshold. Similarly, the annual SAR at 30-60 and 

90-120 cm depths were much lower than the critical threshold for sand over clay soils. Therefore, it is inferred 

that annual gypsum application at a rate of 4.3 t/ha is potentially able to keep the SAR lower than the critical 

value.  

 

 

Figure 19. Impact of long-term (2018-2050) use of different qualities of irrigation waters (recycled water, RW; Good/SA 

water, GW; blending RW and GW in 1:1 proportion, B; RW and GW used in monthly cycles, Alt1; RW and GW used half 

yearly cycles, Alt6) along with annual gypsum application of 4.3 t/ha (G2) on the annual sodium adsorption ratio 

(SAR) build up at a) 0-15, 30-60, and c) 90-120 cm depth in sand over clay soil (S4) under potato cultivation. Threshold 

values for SAR are shown as green lines. 

The average ESP values without gypsum amendments varied from 9.8-20.5% in different treatments at 

various depths (Figure 17). It should be noted that the measured ESP in the sandy soils ranged from 0.1- 27% 

(Task 1 Report, Oliver et al., 2019), while the average ESP values in 0-15, 15-30, 30-60, 60-90 and 90-120 cm 

soil depths were 7.4, 8.3, 7.5, 15.4, and 17.2%, respectively. This indicates there is an appreciable amount of 

inherent ESP in these soils, especially at lower depths (Task 1 report, Oliver et al., 2019). Simulated data 

showed gypsum application at 1.7 t/ha had a good response and decreased the ESP by 30%. However, the 

ESP values were still higher than the SoC threshold of 6 (Appendix 7). Further increase in the annual gypsum 

application to 4.3 t/ha soil reduced the ESP by another 50% which brought the values almost below the soil 

threshold (ESP <6%; Northcote and Skene, 1972) at all soil depths. The exception exists at deeper depths 

when RW is used, producing a slightly higher ESP than the critical value; this may not have a drastic impact on 

the hydraulic and structural properties in the sandy texture soils. A further increase in gypsum application 

(8.6 t/ha) had an almost similar impact as the 4.3 t/ha application. Therefore, an annual application of 4.3 

t/ha (G2) with RW will likely offer an effective control to the harmful impact of RW to all depths for sustainable 

potato cultivation in the NAP region.  
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The extent of annual ESP build-up at different depths with 4.3 t/ha gypsum application is shown in Figure 20. 

Although the ESP build-up decreased with depth, the values were higher than the threshold, especially under 

RW irrigation. In most cases, the annual ESP falls under the sodic class (ESP= 6-15%), except with GW irrigation 

where ESP was maintained below the critical (<6%) value throughout the soil profile.   

 

Figure 20. Impact of long-term (2018- 2050) use of different qualities of irrigation waters (recycled water, RW; 

Good/SA water, GW; blending RW and GW in 1:1 proportion, B; RW and GW used in monthly cycles, Alt1; RW and GW 

used half yearly cycles, Alt6) along with annual gypsum application of 4.3 t/ha (G2) on the annual exchangeable 

sodium percentage (ESP) build up at a) 0-15, 30-60, and c) 90-120 cm depth in sand over clay soil (S4) under potato 

cultivation. Threshold values for ESP are shown as green lines. 

Overall, the annual gypsum application at a rate of 4.3 t/ha in the SoC soils was observed to manage the 

negative impact of use of RW and other combinations adequately. Apart from the test crop (potato), other 

crops can also be grown with RW water along with 4.3 t/ha gypsum application while maintaining a 0.2 

leaching fraction (LF) with each irrigation.  

For calcareous and hard red brown soils, a leaching fraction of 0.5 would at least solve the salinity issue, and 

reduce SAR to acceptable limits for most water types (recycled water excluded). The ESP values for both soils 

is still above the threshold value of 6%. 

The slightly higher ESP values in the surface depth under RW irrigation can be further controlled with 

additional application of organic manure or compost along with the annual gypsum application. Organic 

manure not only helps reduce the sodicity impact (i.e. improve soil structure), but also adds nutritional value 

to sandy soils which are traditionally deficient in many essential nutrients required for sustainable crop 

production. 
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4.4.4 Conclusion 

Irrigation induced salinity and sodicity will likely impact agriculture in areas such as the NAP for the 

foreseeable future if adequate management options are not put in place. The sustainable use of recycled 

water for irrigation requires designing and implementing effective farm-scale and regional-scale solutions. A 

comprehensive strategy for long-term monitoring, auditing and reporting framework can help streamline the 

use of recycled water for irrigation. This modelling study evaluated the impact of long-term (2018-2050) 

management options when using recycled water (RW), and included the use of good quality (GW), blending 

RW and GW (B), and alternate use of RW and GW. Management options tested further include the annual 

application of varied rates of gypsum (0, 1.7, 4.3, 8.6, and 12.9 t/ha) to reduce sodicity hazards (SAR and ESP). 

Finally, simulations were also conducted to evaluate the impact of different leaching fractions (0.2, 0.3, 0.4, 

and 0.5) for reducing salinity and sodicity problems. 

In sandy soils, use of various irrigation water qualities had relatively little negative impact on salinity and 

sodicity. However, continuous use of RW over the long-term can increase SAR and ESP of the soils to a level 

which could reduce the hydraulic conductivity and lead to other structural problems in the soil profile. 

Adoption of annual use of gypsum at 4.3 t/ha with 0.2 LF were found suitable to manage the hazards 

associated with the use of recycled water irrigation.  

In contrast, the degree of salinity and sodicity problems increased many fold in calcareous soils, particularly 

with the continuous use of RW. Gypsum application decreased SAR and ESP, and increased the level of soluble 

salts; to avoid problematic salinity levels, applying a 50% higher irrigation amount (LF 0.5) would effectively 

reduce the salinity levels below crop thresholds. Annual gypsum applications of 8.6 t/ha decreased the SAR 

below its threshold (< 3), especially for the B water type and the blending combinations, but not under RW. 

While the ESP reduced four fold with gypsum application (8.6 t/ha) and LF (0.5), the ESP is still higher than 

the threshold value (< 6%) for Australian soils, under all water quality combinations. While gypsum improves 

soil structure, this salt can become counterproductive to crop growth under excessive application rates. 

Reliance on regular soil amendment with gypsum should be tempered by a better understanding of soil water 

interactions, clay mineralogy and the fate of salts as well as the effectiveness of drainage in the NAP soils. 

Out of the three soils studied, hard red brown (HRB) soils developed the overall highest salinity and sodicity 

levels, regardless of water types used. The ECSW values at surface depths (0-15 cm) were below sensitive crop 

thresholds for almonds (3 dS/m) under all water quality scenarios. At the 30-60 and 90-120 cm depths, ECSW 

attained an average value of 4.2 and 5.4 dS/m, respectively, using RW. Gypsum application at 8.6t/ha further 

increased the ECSW in the soil; increasing LF from 0.2 to 0.5 decreased the ECSW to become close to the 

threshold for almonds. The 8.6 t/ha gypsum application resulted in ESP values that were still higher than the 

critical threshold value of 6% for Australian soils for all irrigation scenarios and at all soil depths.  
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4.5 Impact of irrigation under greenhouse cropping conditions 

4.5.1 Introduction 

Long-term evaluation of irrigation induced transformations in the soil is essential for optimal water 

management and devising effective irrigation scheduling for crops, including protected crops. In this study, 

the multi-component numerical model HYDRUS-1D UNSATCHEM was used to assess the effects of long-term 

(2018-2050) irrigation on salt build-up in soil under greenhouse conditions. Blended water (recycled water 

and harvested rainwater) was used to irrigate soil grown greenhouse vegetables (tomato, cucumber, 

capsicum, and eggplant). Simulations provided insight into the development of irrigation induced chemical 

transformations in the soils and which management options provide for a sustainable use of irrigation water. 

The management scenarios include 4 leaching fractions (LF), i.e. LF0, LF0.15, LF0.2, and LF0.3, accounting for 

0, 15, 20, and 30% excess water applied, respectively. We also considered four annual levels of gypsum 

application, i.e. 0 (G0), 10 (G10), 15 (G15) and 20 (G20) meq/kg soil, respectively. The model simulated annual 

root water uptake by cucumber, tomato, capsicum and eggplant was 303, 476, 642 and 649 mm, respectively, 

in response to a temperature based irrigation schedule that did not account for a leaching fraction. 

4.5.2 Methods and materials 

Soil samples from two greenhouses were collected from the NAP region from 3 locations at two depths (0-

20 and 20-30 cm) (Awad et al., 2019). These samples were analysed for their physico-chemical properties 

(Oliver et al., 2019) to generate soil hydraulic and chemical properties for the HYDRUS-1D - UNSATCHEM 

model. Because a 200 cm-deep domain was adopted for the simulations, soil hydraulic parameters obtained 

in 20-30 cm layer of the greenhouse soils were extended to the bottom of the 200 cm-deep domain. 

A survey of the existing greenhouses conducted in the NAP region (Awad et al. 2019) indicated four crops are 

commonly grown under greenhouse conditions (tomato, capsicum, cucumber and eggplant). Therefore, 

these crops were considered for the long-term simulations. The water quality parameters and irrigation 

schedules for the test crops were obtained from the IQ-QC2 model developed by Awad et al. (2019). This 

model generates daily crop water requirements for crops and the associated water quality parameters based 

on a user-defined mixing of available waters for irrigation, such as recycled water, harvested rain water and 

storm water. Monthly averaged irrigation water quality data for multiple years was used as shown in Table 

14. Other crop specific inputs such as root water uptake parameters (Feddes et al., 1978) and salinity 

threshold-slope functions (Maas and Hoffman, 1977) are given in Appendix 3 of this report. 

The IQ-QC2 model adopted a temporally uniform factor of 0.6 to the open field crop evapotranspiration (ETC) 

to derive the crop water requirement of the glasshouse crops. The calculated ETC matches the temperature 

based irrigation schedule adopted by the local growers, therefore, we used these values as daily potential 

crop transpiration in the HYDRUS-1D-UNSATCHEM simulations. Rainfall and soil evaporation were not 

considered in the simulations as these are supposed to be controlled by the presence of closed growing 

structures (greenhouse). The daily ETC of all the crops was estimated from the reference crop 

evapotranspiration (ET0) and the crop coefficient (KC) approach (Allen et al., 1998) used for open field crops. 

Monthly KC values for tomato, cucumber, capsicum and eggplant are provided in the IQ-QC2 mixing model 

as described by Awad et al. (2019). Climate parameters for the ETC estimation were obtained from the Bureau 

of Meteorology station at Edinburgh RAAF site (34.71°S, 138.62°E; BOM station number 023083) for the 

historical climate (1970-2018) and from the Goyder Institute climate change projections for the future 

climate (2018-2050) (Charles and Fu, 2015).  
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More details on the crops, their irrigation schedule, mixing strategy, and quality of blended water are given 

in Awad et al. (2019). A schematic representation of the temperature based irrigation schedule for 

greenhouse cultivation is shown in Figure 21. 

  

Figure 21. Schematic representation of the temperature based irrigation schedule followed by growers in the NAP 

region. 

4.5.3 Results and discussion 

Results from the simulations are illustrated for one of the two soils. Further details are available in Appendix 

9. The simulated annual values of pH, ECSW, SAR and ESP under different crops are shown in Figure 22. The 

pH values decreased gradually, although the magnitude of reduction was very small. At the end of the 

simulation at year 2050, the average pH values in the soils varied in a narrow range (8.2-8.5) for all the crops. 

The pH values were relatively higher in cucumber as compared to other crops. These changes in soil pH might 

be related to a low pH of the irrigation water as compared to the soil solution, which gradually decreased the 

pH to achieve a quasi-equilibrium.  

Profile average ECSW values showed a sharp increase for all crops. The ECSW build up was the lowest in 

cucumber, followed by tomato; these results are consistent with the lower amount of seasonal irrigation 

applied to those two crops. Meanwhile, the highest annual ECSW was observed for capsicum and eggplant; 

this is the result of the higher irrigation application for these crops and a longer cropping season (Jan to Oct-

Nov) as compared to cucumber (Jan-May) and tomato (Jan-Sept). The profile average ECSW at year 2050 rose 

to 6.5, 7.6, 8.7 and 9.3 dS/m for cucumber, tomato, capsicum and eggplant, respectively. These values are 

above the salinity tolerance threshold ECSW (ECSW was derived from published ECSe values as ECSW = 2×ECSe) 

for these crops, i.e. 5, 5, 3.4 and 2 dS/m (Maas and Hoffman, 1977; Sonneveld and Vogt, 2009).  
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Figure 22. Simulated annual average values of a) pH, b) soil water electrical conductivity ECSW (dS/m), c) sodium 

adsorption ratio (SAR), and d) exchangeable sodium percentage (ESP) in the sandy clay loam soil (S1) under tomato 

(t), cucumber (cu), capsicum, and eggplant crops irrigated with a blend of recycled water and rain water following a 

temperature based irrigation schedule. 

Similarly, annual average SAR and ESP values in the soil also showed an increasing trend for all crops. The ESP 

values at the end of simulation (year 2050) were 30.8, 27.1, 33.2, and 31.4 % under tomato, capsicum, 

eggplant and cucumber, respectively. The initial ESP values (13-18 %) in the soil were also high, which had 

increased over the model warming up period (1970-2018) and varied for different crops in response to the 

amount of irrigation water applied. Undoubtedly, the final ESP values are much higher than the critical ESP 

(>6%), which leads to the development of sodic soil conditions. Therefore, an annual addition of gypsum is 

essential to reclaim the soil from the high ESP values. Alternatively, a soluble Ca application as part of the 

irrigation above the crop requirement also helps in keeping the ESP under control. Note that rapid leaching 

of soluble Ca or likely precipitation in the soil as calcite at high pH may reduce the effectiveness of added 

soluble Ca.   

An annual comparison of profile average pH, ECSW, SAR and ESP values obtained with and without 0.2 LF along 

with different annual gypsum applications (0, 10, 15 meq/kg soil) for tomato cultivation is shown in Figure 

23. The G10 with 0.2 LF scenario initially had average profile SAR and ESP values higher than the threshold 

(6%). These reduced gradually to the values similar to those obtained with 15 meq/kg soil (G15) gypsum at 

the end of the simulation at year 2050. Similarly, the average SAR values were also reduced below the 

threshold, the pH reduced by 8.7% with average values around 7.7, and ECSW was much lower than the 

tomato tolerance threshold.  
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Figure 23. Effect of leaching fraction (LF0 and LF0.2) and gypsum application [0 (G0), 10 (G10), and 15 (G15) meq/kg 

soil] on the changes in annual profile average a) pH, b) soil water electrical conductivity ECSW (dS/m), c) sodium 

adsorption ratio (SAR), and d) exchangeable sodium percentage (ESP) in the sandy clay loam soil (S1) during 2018-

2050 under tomato cultivation in greenhouse condition. 

4.5.4 Conclusion 

This study used the multi-component major ion chemistry module UNSATCHEM of the HYDRUS-1D model to 

evaluate the effects of long-term (2018-2050) irrigation with blended water for soil grown tomato, cucumber, 

capsicum and eggplant under unheated greenhouse conditions. The results revealed that irrigation schedules 

that do not apply a significant leaching fraction may lead to high salt build up and ESP development in the 

soil while accounting for future climate projections. The soil solution salinity (ECSW) can increase to 6.5-9 dS/m 

at year 2050 and ESP can rise to 27-33% for all crops considered. These conditions could render the soil unfit 

for crop production and could potentially degrade the associated environment. Therefore, appropriate 

management options should be implemented to keep the irrigation induced harmful impacts under control.  

The study evaluated the efficacy of increased leaching and gypsum application to control salinity and sodicity. 

Management scenarios with different leaching fractions for salinity control showed that 15-20% more water 

per irrigation would be required to keep the salinity under control for soil grown greenhouse vegetables. 

Results obtained in various scenarios for amelioration of soil with high ESP suggest that annual gypsum 

application at a rate of 1.7 t/ha was adequate for managing this hazard. Ideally, both management options 

(i.e. leaching fraction and gypsum use) need to be implemented simultaneously. Finally, long-term 

monitoring of highly efficient greenhouse production systems is essential for early identification of irrigation 

induced soil issues.  
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4.6 Optimising riparian zone widths to control lateral solute migration6 

4.6.1 Introduction 

Riparian zones are essential to preserve water quality of rivers adjacent to large areas of irrigated agriculture. 

We used HYDRUS (2D/3D) to quantify the influence of crops (almonds, wine grapes and potato-carrot) 

irrigated with recycled water (RW) (from 1st July, 2009 to 30th June, 2017) on water and solute exchange at 

the Gawler River interface in relation to vegetation buffer widths from 10-110 m.  

The study involves complex heterogeneous geological formations involving real-time climatic, vegetative 

(crop and buffer), and stream flow conditions (see Appendix 10 for details). The key objectives of this 

investigation were: i) to calibrate and validate a numerical model (HYDRUS 2D/3D) for water table dynamics 

in an area adjacent to a seasonal river (Gawler River) by incorporating daily water level fluctuations in the 

river, groundwater dynamics, crop evapotranspiration, riparian zone vegetation evapotranspiration, and soil 

heterogeneities; ii) to estimate the impact of different buffer zone widths on the flux exchange at the river-

buffer interface under different cropping systems, iii) to optimise the riparian width to control the irrigation-

induced solute movement to the river for different irrigated crops; and iv) to estimate the residence time of 

the solute tracer migrating to the adjoining water body through the subsurface under shallow water table 

conditions. 

4.6.2 Methods and materials 

The study was carried out at the Virginia Park (34°38ʹ22.6ʺS and 138°32ʹ27.6ʺE) gauging station at Gawler 

River which is situated at 12 m Australian Height Datum (AHD) (Figure 24). The Gawler River only flows during 

the rainy season (July to October). Stagnant water (about 30-100 cm)/base flow conditions prevail at other 

times at the gauging station. The adjacent area, being a part of the vast NAP, has a relatively flat topography 

with a gentle slope to the west. The NAP experiences a Mediterranean climate, which is characterised by hot, 

dry summers and cool to cold winters. Long-term (1900-2016) average rainfall in the region amounts to 475 

mm (Department of Environment, Water and Natural Resources, 2016) and annual evapotranspiration 

amounts to 1308 mm, resulting in relatively high irrigation demand for crop production (see section 4.2). 

Water table fluctuations in the area adjacent to the river were monitored in the shallow wells. Location of 

these wells is shown in Figure 24. 

The vegetation buffer at the study site is dominated by River Red Gums (Eucalyptus spp.) with its width being 

highly variable along the longitudinal distance of the river, ranging from a couple to hundreds of metres. The 

area adjoining the riparian buffer is used for intensive cropping such as almonds, wine grapes, potato, carrot, 

and onion all along the river. On the southern side of the river where the modelling domain was established, 

the land has been used for the wine grape cultivation. 

The roots of the buffer strip vegetation were assumed to be distributed linearly from the soil surface to a 

depth of 200 cm. Although roots of Eucalyptus can grow to a depth of 6-7 m (Phogat et al., 2017a), due to 

shallow water table conditions at the site, roots generally do not grow far below a water table due to the lack 

of the oxygen supply (Baker et al., 2001). Similarly, the rooting depths of 100, 200, and 60 cm for wine grape, 

almond, and annual horticulture (carrot and potato), respectively, were used in the modelling study based 

 
6 Published as: Phogat, V., Cox, J.W., Kookana, R.S.,  Šimůnek, J., Pitt, T., Fleming., N. 2019. Optimizing the 

riparian zone width near a river for controlling lateral migration of irrigation water and solutes. Journal of 

Hydrology 570: 637-646. 
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https://www.sciencedirect.com/science/article/pii/S0022169419300927?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/S0022169419300927?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/S0022169419300927?via%3Dihub#!
https://www.sciencedirect.com/science/journal/00221694
https://www.sciencedirect.com/science/journal/00221694
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on relevant studies from the region (Phogat et al., 2017b, 2018b). The root water uptake parameters for 

almond and wine grape were also taken from these studies and the HYDRUS database (potato and carrot); 

Feddes’ parameters (Feddes et al., 1978) were used for both the crop and buffer zones.  

 

 

Figure 24. Map of the study site showing the Gawler River, the gauging station, shallow wells (yellow circles) and 

adjacent cropped area. 

 

The transport domain represents a 400 m cross section from the middle of the river (Figure 25). The vertical 

dimension represents the distance from the Australian Height Datum (AHD) to the soil surface (12 m) at the 

experimental site. The top width of the river was 10 m, the bottom width 4 m, and the depth 4 m at the study 

site. The width of the buffer zone is 30 m from the river bank. Therefore, the lateral width of the riparian 

zone at the Virginia Park gauging station from the middle of the river is approximately 35 m, which also 

includes an unsealed road which runs along the river. The finite element discretization resulted in 10,000 2D 

elements in a standard rectangular 2D domain.  

On the upper left side of the domain (Figure 25), an atmospheric boundary was considered through which 

infiltration (flux into the domain) or evapotranspiration (flux out of the domain) occurs. A time-variable flux 

boundary condition (treated similarly as an atmospheric boundary condition) was imposed on the upper right 

side of the domain to represent the buffer zone, which had different fluxes than the irrigated surface. The 

flux at this boundary was given by the difference between daily rainfall and daily potential evaporation (ES). 

A special HYDRUS boundary condition (BC) was specified in the river. This special BC assigns the hydrostatic 

pressure head on the boundary below the water level in the river and a seepage face BC on the boundary 

above the water level. The specified water levels in the river are linearly interpolated in time in order to 

smooth the impact of daily fluctuations of water levels in the river (Phogat et al., 2017a). Measured values 

of water table depths in the well near the left boundary of the domain (PTA100) were used to define initial 

and time-variable pressure head boundary conditions. No flow was assumed as the boundary. Daily rainfall 

in excess of the soil infiltration capacity is accounted for as run off by HYDRUS. The longitudinal dispersivity 

was assumed as one tenth of the modeling domain (with the transverse dispersivity being one tenth of the 

longitudinal dispersivity) (Cote et al. 2003; Phogat et al., 2014) and the molecular diffusion coefficient in 

water equal to 1.66 cm2/day (Phogat et al., 2018b). 

N

Gawler River

Virginia Park

Wells
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Figure 25. Schematic representation of the flow domain showing the material distribution, the river, the buffer strip, 

irrigated crops, and imposed boundary conditions. 

Measured water table depths (average of four quarterly measurements in a year) in the shallow wells 

(PTA101, PTG080 and PTG087, Figure 24) near the study site were used for the calibration and validation of 

the model. Simulations were carried out for 1461 days (1st July 2009 to 30th June 2013) to calibrate the 

model for water table depths at the middle of the domain (X = 200 m). Model calibration involved manually 

adjusting the most sensitive model parameters while visually comparing observed and simulated water table 

depths. A quantitative evaluation of the “best fit” model parameters was undertaken using goodness-of-fit 

measures similar to other studies (e.g., Alaghmand et al., 2013, 2014). The calibrated model was then 

validated for 1461 days (1st July 2013 to 30th June 2017) by comparing the measured and simulated water 

table depths. The calibrated and validated model was then used to assess the impact of other irrigated crops 

(almond and annual horticulture crops such as carrot and potato) and the buffer zone widths on the migration 

of water and solutes to the river.   

The calibrated and validated model was used to simulate the dynamics of the hydrological fluxes and solute 

movement for different buffer widths and for various irrigated crops (wine grape, almond, and carrot-potato 

rotation). The simulations were executed for 8 years (1st July 2009 to 30th June 2017) plus further 8 years if 

needed (if the solute did not reach the river) for all 3 irrigated crops for varying buffer zone widths (10 - 110 

m) from the centre of the river. These simulations were established to evaluate the appropriate width of the 

riparian zone to control the lateral movement of solutes to the river. 

4.6.3 Results and discussion 

The measured buffer zone width (35 m from the middle of the Gawler River) and actual crop grown (wine 

grape) adjoining the study site were considered for the calibration and validation simulations executed from  

July 1st, 2009 to  June 30th, 2013 and from July 1st, 2013 to  June 30th, 2017, respectively. The data in Figure 

26 demonstrates a consistent performance of the model (i.e. R2 of 0.66 and 0.64, and E = 0.34 and 0.34, 

respectively) during calibration (2009-2013) and validation (2013-2017) period. These values fell within the 

R2 values (0.35-0.84) reported in other modelling studies (e.g., Coffey et al., 2004; Phogat et al., 2016). Other 

statistical estimates (ME, MAE, RMSE and SD; see Figure 26) during the calibration and validation period were 

similar but slightly higher than previously observed values (e.g. Alaghmand et al., 2013). This is because of 

wide fluctuation within the input data. Overall, all these statistics confirm an adequate representation of 

groundwater fluctuations by the model. 
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Figure 26. Relationship between measured and simulated water table depths, statistical error estimates (ME = mean 

error, MAE = mean absolute error and RMSE = root mean square error), standard deviation (SD) and model efficiency 

(E) values during the calibration (2009-13) and validation (2013-17) periods. 

 

The extent of average annual irrigation among all crops during 2009-2017 (Figure 27) was the lowest in wine 

grape (242 and 320 mm), followed by almond (760 and 920 mm) and the highest for annual horticulture (951 

and 1226 mm) reflecting their specific evapotranspiration requirements (Phogat et al., 2018b). 

Correspondingly, the leaching fraction/recharge flux under almond (87-298 mm) and annual horticulture 

(100-252 mm) was 3-3.8 times higher than under wine grapes. For wine grapes, a negative annual flux balance 

was recorded in some years but, the overall average balance was positive over 8 years. These observations 

are consistent with other studies (Green, 2010; Reynolds, 2010; Phogat et al., 2018b). It is well understood 

that the contribution of leaching fraction/irrigation return flow from irrigated crops can be a critical driver 

for the river-buffer hydraulic exchange (e.g., Berens et al., 2009). 

 

 

Figure 27. Annual irrigation (mm) and recharge/discharge (mm) in the domain under a) wine grape, b) almond, and 

3) annual horticulture (carrot-potato) crops. Positive fluxes are recharge and negative fluxes are discharge from the 

domain. 

 

The impact of different buffer widths on the average annual water exchange at the river interface for 

different irrigated crops is shown in Figure 28. For wine grapes, the average annual hydraulic balance was 

negative for the 10-20 m buffers during the simulation period (8 years, 2009-2017), indicating the dominance 
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of flow from the irrigated area to the river system. The reverse was observed for buffer widths > 20 m as the 

evapotranspiration demand of the buffer vegetation governed the water exchange at the river-buffer 

interface. In the case of almond, the overall water balance remained negative (discharge to the river) for a 

buffer zone up to 65 m due to its  3 times higher irrigation than for wine grapes.  Similarly, under annual 

horticulture (carrot and potato) crops, the overall hydraulic balance was similar to almonds and the threshold 

buffer zone width for equilibrium flow conditions reached at 55 m (Figure. 6). Based on irrigation regime for 

irrigated crops, different buffer zone widths are required for equilibrium flow conditions at the river-buffer 

interface. 

 

 

Figure 28. An average balance of water exchange across the stream-aquifer interface for different buffer widths under 

a) wine grapes, b) almond, and c) annual horticultural crops. 

 

Salts load transported to the river and the residence time of solutes in the soil for different buffer widths and 

crops are shown in Figure 29. The amount of salts for the 10 m buffer was very similar for almond and annual 

horticulture and about 40 times higher than for wine grapes. Meanwhile, the salts transported to the river 

for the 20 m buffer were higher for annual horticulture than for almond. When the buffer width was 

increased to 60 m, only a small additional reduction in the salt load was observed. Similarly, for annual 

horticulture, the average annual load of salts was reduced to 92.2% (to 1566 mg) for the 20 m buffer width 

as compared to the 10 m buffer width. For a 99.9% reduction in the salt load, a 40 m buffer width is needed. 

Therefore, it is established that maintaining a 20, 60, and 40 m buffer widths for wine grapes, almonds, and 

annual horticulture can effectively reduce irrigation induced salts/tracers transport to the river by 99.9%. 

The current findings highlight that considerations of local hydraulic, climate, and soil conditions, as well as 

local geological heterogeneity, can have a marked impact on the requirement of adequate vegetative buffers 

along rivers. The buffer zone guidelines adopted in most of the states (New South Wales = 40 m, Western 

Australia = 30 m, Tasmania = 30 m, and Victoria = 60 m) in Australia for maintaining the river water quality 

are mainly based on overseas studies (Hansen et al., 2010). Therefore, the consideration of the type of 

irrigated crops grown along the rivers and surface water bodies could have varied impact on the maintenance 

of the buffer zone and hence the riparian zone guidelines. 
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Figure 29. The amount of salts (line graph) and their residence times (bars) for different irrigated crops as a function 

of a buffer width during 2009-2017. 

 

4.6.4 Conclusion 

Major findings from the two-dimensional simulations with HYDRUS include: 

• The hydraulic exchange at river interface for different irrigated crops was found to be sensitive to 

the buffer widths.  

• The likely average annual water flow from the almond and annual horticulture irrigated area to the 

river was nearly twice as much (2.1 and 1.8, respectively) than under wine grapes.  

• For wine grapes, almonds and annual horticulture, the average annual hydraulic balance reached an 

equilibrium at 20, 65 and 55 m buffer widths, respectively.  

• The average annual load of salts became negligible for wine grapes with a 20 m buffer width.  

• This study shows that buffer widths of 20, 60, and 40 m for irrigated wine grapes, almond, and annual 

horticulture, respectively, are needed to restrict the migration of salts to the river.  

 

The optimised widths in this study differs from the existing guidelines in Australia. It is suggested that there 

is a strong need to revise the existing riparian width guidelines for maintaining good water quality in surface 

water bodies near RW irrigated crops. Further refinements are possible by incorporating the influence of 

preferential flow paths, improved water stress response functions, and addressing the data limitations for 

calibration of the model for solute dynamics. 

4.7 Boron risks associated with recycled water irrigation 

4.7.1 Introduction 

Boron (B) is a micronutrient that is required by plants in small quantities (<500 g/ha) (Shorrocks, 1997). Boron 

is required for the formation of new tissues but not for the maintenance of older tissues, hence actively 
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growing plants require larger amounts of B than slowly growing or mature plants (Adriano, 2001). Boron 

deficiency commonly occurs in sandy soils which have low cation exchange capacity (CEC) and organic matter 

(OM) content, where leaching and heavy cropping have diminished the soil B reserves (Adriano, 2001). Boron 

toxicity on the other hand usually is seen in soil of marine sediments, in soils derived from parent material 

rich in B, and in arid and semi-arid soils (Adriano, 2001). Of all plant nutrient elements, the range between 

deficient and toxic levels of available concentration is smallest for boron (Goldberg, 1997). Small increases 

due to fertiliser application or via boron in irrigation water and natural variations in boron concentration with 

soil depth may result in a soil transitioning from deficient to toxic levels or vice versa.  

4.7.2 Methods and materials 

Boron analyses 

Plants have varying degrees of tolerance to B in soil solution and Adriano (2001) suggests B concentrations 

<0.5 mg/L in soil solution are probably safe for most plants but many plants may be adversely affected when 

B levels are in the range of 0.50 to 5.0 mg/L. Threshold concentration ranges for B concentration in soil 

solution based on Leyshon and Jame (1993) are given in Table 17, together with percentage of soils (sampled 

in this study) within each threshold range. The fraction of B in soil that is available for plant uptake is termed 

the phytoavailable fraction. Total B is an unreliable measure of the bioavailable fraction in soils and often an 

extractant, such as water or CaCl2, is used as an index of the phytoavailable fraction (Adriano, 2001).  

Table 17. Threshold boron concentration in soil solution for various crops and percentage of total number of soil 

samples (all data from 0-60 cm) from this study (Task 1 Report, Oliver et al., 2019) within each threshold range. Boron 

in soil solution determined at maximum water holding capacity. # Threshold concentrations from Leyshon and Jame 

(1993). * data from Gupta et al. (1985). 

THRESHOLD CONCENTRATION (Mg/L B) 
RANGE FOR B IN SOIL SOLUTION (FIELD 
CAPACITY BASIS)#  

PERCENTAGE (NUMBER) 
OF SOIL SAMPLES. TOTAL 
SOIL SAMPLES N=109. 

CROP WITHIN THRESHOLD 
CONCENTRATION RANGE 

Very sensitive <0.5 72.4% (79) Lemon*, Grapefruit*, Avocado*, 

Orange* 

Sensitive 0.5-1.0 14.7% (16) Fig, Grape, Walnut, Onion, Garlic 

Moderately sensitive 1.0-2.0 4.6% (5) Broccoli, Red pepper, Carrot, 

Potato, Cucumber  

Moderately tolerant 2.0-4.0 4.6% (5) Lettuce, Cabbage* 

Tolerant 4.0-6.0 3.7% (4) Tomato 

 

As part of Task 1, Oliver et al. (2019) determined boron in soil solution at maximum water holding capacity 

(MWHC) based on McLaughlin et al. (1997).  To better represent the soil solution following irrigation, the B 

in soil solution was measured using a solution with a Cl concentration (550 mg/L) equivalent to that found in 

one of the primary irrigation water sources being considered, namely recycled waste water.  

A subset of soils were sequentially extracted in duplicate with a high Cl (550 mg/L Cl) solution in a 1:5 ratio. 

The soils selected had been found to have relatively high B in soil solution and the sequential extractions 

were performed to determine whether B would continue to come into solution with each successive 

extraction (Appendix 11). 
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Boron sorption values 

Sorption coefficients (Kd values) were determined for boron (B) using a batch equilibrium method 

(OECD/OCDE, 2000). The soils selected for determining B Kd values were chosen to cover a range of soil 

textures, soil pH and native B concentrations (for details, see Appendix 11).   

Irrigation water quality 

Boron concentration in recycled DAFF water were obtained from the Task 3 Report (Awad et al., 2019). A 

summary of the data is provided in Table 18.   

Table 18. Boron concentration (mg/L) in Bolivar DAFF irrigation water. 

PERIOD NO. OF 
OBSERVATIONS 

5TH PERCENTILE 50TH PERCENTILE 95TH PERCENTILE 

2001-2011 122 0.204 0.327 0.529 

2012-2016 57 0.197 0.334 0.529 

 

1D solute transport model 

Equilibrium sorption 

Boron concentration in soil solution is considered to be determined mainly by adsorption-desorption 

reactions (Goldberg, 1997). Main sorption sites for boron in soil are clays, aluminium and iron oxides, 

magnesium hydroxite, calcite, and organic carbon (Goldberg, 1997). For clay minerals, the order of B 

adsorption per gram is: kaolinite < montmorillonite < illite (Keren and Mezuman, 1981). Calcium carbonate 

(CaCO3) acts as an important B adsorbing surface in calcareous soils. Also, addition of CaCO3 increases B 

fixation by soils because it increases the soil pH (Goldberg and Forster, 1991). 

Modelling of equilibrium boron adsorption on oxides, clay minerals, organic matter and other soil solid 

phases have typically been described using Langmuir and Freundlich adsorption isotherms (Goldberg, 1997; 

Marzadori et al., 1991). Equilibruim sorption assumes that the adsorption-desorption process is fast relative 

to fluid movement in soil and thus not time-dependent (Mallants et al., 2011). We developed both Langmuir 

and Freundlich isotherms, together with the linear Kd model (for details, see Appendix 11). 

 

Non-equilibrium sorption 

When the adsorption-desorption reaction is partially time dependent, the two-site sorption concept can be 

implemented (Selim et al., 1977; van Genuchten and Wagenet, 1989). In this case the sorption sites are split 

into equilibrium sites where sorption is instantaneous (type-1 sites with fast exchange between solid and 

liquid phase: SEq (µg/g) and sites where sorption is kinetically controlled (type-2 sites with time-dependent 

sorption: SKin (µg/g)). The mathematical expression for the mass balance of the two-site chemical non-

equilibrium is (Šimůnek et al., 2008; Mallants et al., 2011): 

 𝑆𝑇𝑜𝑡 = 𝑆𝐸𝑞 + 𝑆𝐾𝑖𝑛 (11) 

 𝑆𝐸𝑞 = 𝑓𝑆𝑇𝑜𝑡 (12) 

 
𝜕𝑆𝐾𝑖𝑛

𝜕𝑡
= 𝛼 [(1 − 𝑓)𝐾𝐷

𝐶

1+𝜂×𝐶
− 𝑆𝐾𝑖𝑛] (13) 

where STot represent the total sorbed phase concentration (µg/g), f (-) is the fraction of equilibrium sorption 

sites (defined by Eq. (12)), α is a first-order rate constant (h-1), ƞ and KD are empirical or quasi-empirical 
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constants. In Eq. (13) we have assumed that equilibrium sorption is represented by a Langmuir type isotherm, 

although linear and Freundlich isotherms can also be invoked.  

4.7.3 Results and discussion 

Boron speciation 

Boron chemistry in soil is very simple: it does not involve redox reactions and boron species are not volatile. 

Dissolved boron in soil pore water is present only in the +3 valence state (Figure 30). The dominant boron 

species in soils at low pH values is the neutral and weak boric acid, B(OH)3. As the soil pH increases, boric acid 

forms the borate anion by accepting a hydroxyl ion: as a result, the proportion of the borate anion, B(OH)4
-, 

increases (Figure 30). The ratio of these two boron species depends on the first dissociation constant of boric 

acid, Ka. The corresponding pKa value = 9.24 (pKa = - log(Ka)). As a result, at pH < 9.2, dissolved boron 

predominantly exists in the form of an uncharged oxyanion (B(OH)3) while at pH > 9.2, it is mostly present as 

B(OH)4
− (Figure 30). 

  

Figure 30. Eh–pH predominance diagram of boron at 25 °C, 1.013 bars and activity of B = 10−6 calculated with The 

Geochemist’s WorkbenchTM (Bethke et al., 2019) (left). Distribution of aqueous boron species versus pH in soil water 

at low EC (ionic strength I = 2.714×10-2 mol/kgw between pH 7-9) and high EC (5 g/L salinity) (right). Boron speciation 

calculations based on PhreeqC (Parkhurst and Appelo, 2013). 

At low pH, B sorption is low and dominated by the neutral species B(OH)3. As the pH increases, the borate 

ion, B(OH)4
-, becomes the most abundant species characterised by an increase in sorption (Goldberg and 

Glaubig, 1986; Adriano, 2001).  Further increases in pH (i.e. pH > 9) result in increased OH- concentration 

relative to B(OH)4
- causing B adsorption to decrease due to competition with OH- for sorption sites (Goldberg 

and Glaubig, 1986; Adriano, 2001). Boron adsorption for soils from the Northern Adelaide Plains will be 

discussed in the next section.  

Native boron concentration in NAP soils 

Soil solution boron 

Of all the soils assessed (surface layers 0-10, 10-30 and 30-60 cm), boron in soil solution was low (<0.5 mg/L 

B) for 72% of soils, while 13% of soils had >1 mg/L and 8% had >2 mg/L boron in soil solution (Task 1 Report, 

Oliver et al., 2019). Comparison of these boron levels with threshold values above which crops become 

sensitive to B indicates that the native B in some of the soils may already be at concentrations that are limiting 

or toxic to crop growth (Table 17).   
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The distribution of B in soil solution at the three sampling depths for the soils sampled across the NAP region 

is shown in Figure 31. Hard red brown soils display the overall highest concentrations, where for the 

remaining three soils boron concentrations are similar. Also, hard red brown soils have the highest relative 

variability in boron as expressed through the coefficient of variation, CV (Appendix 11).  

 

Figure 31. Boron in soil solution for soils of the Northern Adelaide Plains (data from Task 1 (Oliver et al., 2019)). 

Boron concentration for all soils increases with depth. This may be due to several reasons, including higher 

organic matter in the top soil layer providing significant sorption capacity, higher concentrations of boron 

minerals at greater soil depth (inferred from total B versus depth), and leaching of boron under natural 

rainfall conditions. The mean boron concentration versus depth data was used as initial solute conditions for 

the simulations with HYDRUS-1D; as the model domain is 2 m deep, the measured concentration at the 0.45 

m depth was used throughout the remaining soil depth as initial concentration.  

Adsorbed soil boron 

The concentration of adsorbed boron was determined in two ways. The first method uses the hot water 

extraction of boron in 0.01M CaCl2, commonly used to measure B extracted from the adsorbed pools 
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(organic, clays) and soluble pools of the soil (Offiah and Axley, 1993). The second method uses the batch 

method to determine Kd, in which the absorbed concentration is one of the measured parameters (see 

above).  

Adsorbed boron determined with the hot water extraction is shown in Figure 32 for hard red brown and deep 

uniform to gradational soil. Hard red brown soils have a maximum of adsorbed boron at about 40 cm depth; 

the deep uniform to gradational soil display increasing adsorbed boron concentrations with depth. Boron 

behaviour in hard red brown soils is likely related to the depth distribution of the clay fraction; a typical clay 

fraction is 14 % (0-10 cm), 36% (10-30 cm), 55% (30-60 cm), 37% (60-90 cm), and 29% (90-120 cm). In the 

deep uniform to gradational soil, clay content more or less continues to increases with depth; a typical profile 

is 12% (0-10 cm), 4% (10-30 cm), 16% (30-60 cm), 27% (60-90 cm), and 27% (90-120 cm).  

 

Figure 32. Adsorbed boron for soils of the Northern Adelaide Plains based on hot water extraction (data from Task 1, 

Oliver et al. (2019)). Hard red brown based on data from soil profile NAP3, NAP4, NAP6, and NAP7. Deep uniform to 

gradational from soil profile NAP1, NP2, NAP5 (see Oliver et al. (2019) for site details). 

Total soil boron 

The aqua regia digestion method (US-EPA 3050 (1996) or ISO standard 11466 (1995)) is considered effective 

for measuring “total” trace element in soils and is usually used to give an estimate of the maximum element 

availability to plants. Depth distribution of total soil boron is shown in Figure 33 for all four soils. With hard 

red browns showing the overall highest concentrations, these soils could potentially cause suboptimal crop 

production for boron sensitive crops. Note that the total soil boron determined with the aqua regia digestion 

is sometimes lower than that determined with the hot water extraction shown in Figure 32. This is because 

measurements for those two methods were based on samples from slightly different depths; given the 

vertical variability in clay, organic matter, mineralogy and other properties, vertical variability in total boron 

is expected to be considerable. It is therefore best to consider both the aqua regia digestion and the hot 

water extract together to estimate the total boron concentration in this study.  
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Figure 33. Total boron in soils of the Northern Adelaide Plains (microwave soil digest using reverse aqua regia) (data 

from Task 1, Oliver et al. (2019)). 

Boron desorption  

Sequential leaching tests over a period of 96 hours provided data on time-dependent boron desorption which 

were used to derive the first-order rate coefficient α (h-1). This analysis was undertaken only for hard red 

brown soil, as this is the soil with the highest concentrations and thus potentially presents the highest risk. 

Figure 34 shows the desorption curves for hard red brown soil depicted as liquid phase concentration (mg/L) 

versus time from which the cumulative desorbed boron concentration (mg/kg) was derived. In order to derive 

the first-order mass transfer coefficient α, the cumulative desorbed boron data were re-arranged based on 

the following form of the first-order kinetic expression (Pavlatou and Polyzopoulos, 1988): 

 𝐿𝑛(𝑆𝑚𝑎𝑥 − 𝑆) = 𝐿𝑛 𝑆𝑚𝑎𝑥 − 𝛼 𝑡    (14) 

 

where Smax is the total sorption capacity of the soil (mg/kg), and S is the sorbed amount (mg/kg) at time t (h). 

Values for Smax were put equal to the total boron concentration obtained by microwave soil digest using 

reverse aqua regia. Least squares fitting of Eq. (14) with Smax fixed at independently measured values yielded 
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the first-order rate coefficient α (Figure 34). Appendix 11 provides a summary of fitted parameters of Eq. 

(14).  

 

Figure 34. Desorption data (left) and fitted first-order kinetic model (right). The desorption includes instantaneous 

(solid lines, left axis) and cumulative values (dashed lines, right axis). 

The fraction of equilibrium sites, f, was calculated according to Eq. (12) from values of Smax and the total 

desorbed boron at the end of the desorption tests, considered to be equivalent to SEq. This assumes that the 

desorbed boron in the first 96 hrs is readily available for desorption and that it provides a reasonable 

estimation of the boron on the equilibrium sites. Although the desorption curves have not yet reached a 

steady-state (Figure 34), considering the very long simulation times (several tens of years) considered here, 

the desorption data represented here can be considered to only represent relatively rapidly released boron. 

The second approach assumes that the total desorbed concentration obtained through the hot water 

extraction is a good estimator of SEq. Both approaches to estimate f are included in Table 19. 

The inherent limitation in the data is that the short time scale involved cannot provide accurate reaction 

parameters for the long-term release of boron. For this reason the simulated boron releases are considered 

a sensitivity analysis only, and are not aimed at accurately predicting the boron behaviour in the soil profile 

under intense irrigation with recycled water. 

Boron sorption  

Three types of sorption isotherm were derived for boron sorption, based on hard red brown soil: linear, 

Freundlich, and Langmuir. The mathematical expression for the Langmuir equilibrium isotherm is as follows 

(Zhang and Selim, 2005): 

 

 𝑆 = 𝑆𝑚𝑎𝑥
𝐾𝐿×𝐶

1+𝐾𝐿𝐶
 (15) 

 

where S is the total amount of adsorbed boron (µg/g), Smax represents the sorption maximum that can be 

related to soil properties (µg/g), KL is the Langmuir coefficient which is related to the binding strength (L/mg), 

and C is the boron concentration in solution (mg/L). 

The Langmuir parameters Smax and KL were obtained by fitting Eq. (15) to the isotherm data from Figure 35. 

The following data points were taken into consideration: equilibrium boron concentrations in liquid and solid 
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phase from batch tests, and total desorbed boron concentration using the hot water extraction with 0.01 M 

CaCl2 solution. The latter is considered to provide an estimate of the boron adsorbed on clay minerals and 

organic carbon and boron in the soluble pools (Offiah and Axley, 1993). In estimating parameters of Eq. (15) 

we assumed the hot water extraction data represents Smax, which was then fixed for fitting the remaining 

parameter, i.e. with KL the only fitting parameter (see Appendix 11 for details).  

Table 19. Fitted first-order kinetic parameter Smax for data shown in Figure 34. Hard red brown soils (desorbed after 

96 hrs). Smax = total boron from microwave soil digest; f = S1/Smax, where S1 is cumulative desorbed boron at t = 96 hrs 

or total desorption from hot water extraction; r = correlation coefficient for linear regression. 

SITE AND SOIL 
DEPTH 

REACTION RATE 
CONSTANT α (h-1) 

LN(SMAX) CORRELATION 
COEFFICIENT r 

FRACTION OF S1 
SITES, f (-) 
[DESORBED] 

FRACTION OF S1 
SITES, f (-) [HOT 
WATER 
EXTRACTION] 

CL014 20 cm 0.0070 4.177 0.958 0.467 0.0266 

CL014 40 cm 0.01059 4.177 0.924 0.743 0.197 

NAP06 20 cm 0.00152 4.177 0.962 0.605 0.610 

NAP06 45 cm 0.0105 5.289 0.938 0.605 0.457 

NAP07 45 cm 0.0129 3.663 0.977 0.692 0.366 

NAP13 45 cm 0.0128 3.200 0.987 0.692 0.580 

NAP15 45 cm 0.0164 3.610 0.998 0.797 0.385 

NAP20 45 cm 0.00937 3.761 0.966 0.569 0.331 

 

Results from the parameter estimation must be treated with care. Because the use of adsorption isotherms 

is basically a curve fitting excercise, the fitting parameters are only valid for the conditions under which the 

experiment was conducted. Therefore, prediction of B adsorption for conditions beyond those of the 

experiment will be highly unreliable, especially if this involves changes of soil solution B concentration, pH, 

and ionic strength (Goldberg, 1997). 

 

For hard red brown soils four data sets were considered for estimation of the Langmuir isotherms. The data 

originates from four soil profiles (NAP4, NAP6, NAP7, and NAP13) at three depths (0-10, 10-30, and 30-60 

cm). The liquid phase/solid phase data were grouped according to the main soil sorbing material, i.e. clay and 

calcite. The four data groups also have a distinctly different pH. The first group (0-10 cm for NAP 4 and 10-30 

cm for NAP7) has a pH between 5.9 and 6.3 with an equilibrium boron pore-water concentration of 0.54-0.57 

mg/L. Both soil layers have a relatively low clay percentage (8-14%) and low levels of calcite (0.1%). The fitted 

Langmuir and Freundlich isotherms for the four data groups are shown in Figure 35. Fitting parameters for 

all data groups are available from Appendix 11. Fitted parameters for the linear isotherm (Kd model) for hard 

red brown soil are available from Appendix 11.  

Isotherm parameters were not determined for the other soil groups mainly for two reasons: i) there is no 

desorption data for those soils hence there are no first-order kinetic parameter values, ii) hard red brown 

soil has the highest risk of boron toxicity. 

For the purpose of simulating boron behaviour in soil two hypothetical soil profiles were composed, each 

consisting of a set of the previously defined Langmuir models (Appendix 11). Type-1 profile is based on 

Langmuir model 1 and 3 has small Smax values from 0 to 30 cm, then Smax increases to medium values for the 

remainder of the profile. Type-2 profile is based on Langmuir model 1, 2, and 4 and has a maximum Smax from 

15-30 cm, representing the effect of a higher clay percentage. For both profiles the Langmuir parameters 
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have also been recalculated according to Eq. (15), which is the default model used in HYDRUS-1D (Appendix 

11). 

 

 

Figure 35. Langmuir and Freundlich isotherms for boron sorption onto hard red brown soil. 

The non-equilibrium parameters α and f as used in HYDRUS-1D for the two-site sorption model are listed in 

Table 20. Two cases are considered, which differ only in the values of the fraction of S1 sites, f. The first 

method derived f from Smax based on the amount of boron desorbed after 96 hrs; while the second method 

derived f from Smax based on the hot water extract. As Smax values for the second method are larger than 

those of the first method, its f values are slightly smaller.    
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Table 20. Two-site sorption model parameters used in Hydrus-1D model. Fraction of S1 sites, f, calculated as f = S1/Smax, 

where S1 is cumulative desorbed boron at t = 96 hrs (method 1) or desorbed from hot water extract (method 2). 

Reaction rate constant α in h-1 or d-1. 

SOIL TYPE SOIL DEPTH REACTION RATE 
CONSTANT α (h-1) 

REACTION RATE 
CONSTANT α (D-1) 

FRACTION OF S1 
SITES, f (-) 

Hard red brown 
– method 1 (S1 
desorption 
after 96 hrs) 

0-15 cm 0.00426 0.102 0.536 

15-30 cm 0.00426 0.102 0.743 

30-60 cm 0.0129 0.309 0.727 

60-100 cm 0.0129 0.309 0.727 

100-200 cm 0.0129 0.309 0.727 

Hard red brown 
– method 2 
(desorbed from 
hot water 
extract) 

0-15 cm 0.00426 0.102 0.318 

15-30 cm 0.00426 0.102 0.318 

30-60 cm 0.0129 0.309 0.415 

60-100 cm 0.0129 0.309 0.415 

100-200 cm 0.0129 0.309 0.415 

 

A final step in setting up the boron sorption model is defining the initial boron concentrations in the soil 

profile. Liquid phase concentration was measured by extraction at maximum water holding capacity, where 

the latter is defined as the water content at -5 kPa (McLaughin et al., 1997) (Task 1 Report, Oliver et al., 2019). 

These water content values were obtained from the water retention measurements (Section 3.2). The sorbed 

concentration was based on the hot water extraction method, while bulk density was separately measured 

as part of a comprehensive set of soil physical measurements (Section 3.1). The relevant values for C and S 

are given in Appendix 11. 

Boron simulations 

Simulation of boron behaviour in soil was undertaken in a similar way as for the salinity and sodicity 

simulations, i.e. starting with a warming up period to initialise the soil (from 1970-2017), followed by the 32 

years of irrigation with recycled water (2018-2050). During the warming up period, the only boron added to 

the soil was via the rainwater, with an average boron concentration of 0.05 mg/L (Crosbie et al., 2012). From 

2018 onwards, irrigation water with an average boron concentration of 0.33 mg/L is added to the soil. Pasture 

was used as crop, with water requirements estimated as described in Appendix 6. The distribution of 

materials (soil horizons), initial solid phase solute concentration and the depth locations of observation 

points are shown in Figure 36. 
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Figure 36. HYDRUS-1D input data: distribution of soil materials (soil horizons 1-5), initial boron concentration on the 

solid phase (mg/kg), and depth location of observation points for outputting liquid phase concentrations. 

The two-site non-equilibrium sorption model is selected with parameters estimated in the previous sections. 

Sorption on the equilibrium site was described by means of the Langmuir isotherm. 

Given the uncertainty around the kinetic mass exchange parameter α, the simulations of boron behaviour 

following irrigation with recycled water are to be considered primarily as sensitivity analysis. Initial 

simulations with the derived α resulted in an unrealistic boron behaviour, with most of the adsorbed boron 

being released in the first few years after the start of the simulations. As mentioned in Section 4.7.3.2.5, the 

duration of the leaching test was too short to be useful for deriving reaction parameters representative of 

long-term, slow release processes. Therefore, the α was arbitrarily decreased by a factor 10-4 and 10-5 to 

mimic very slow release of boron from the kinetically controlled sorption sites. The boron behaviour was 

simulated first considering the adsorbed boron concentrations of profile NAP7 (Appendix 11). Subsequent 

sensitivity analysis were carried out to analyse the effect of the initial sorbed boron concentration on the 

leaching behaviour. 

As part of the sensitivity analysis we tested the effect of initial sorbed boron concentration on boron leaching. 

Three scenarios were considered: minimum, mean, and maximum values of adsorbed boron concentration 

in hard red brown soil as reported in Appendix 11. Simulations were carried out with the α value set to 10-5 

× its base value; this small value was shown to give the most realistic boron behaviour in the warming up 

period (Appendix 11). Simulated boron concentrations at four depths (30, 60, 100, and 200 cm) for the 80-

year simulation period are displayed in Figure 37. While the effect of variability in initial sorbed boron is 

clearly noticeable in the pore-water concentrations, the overall variability in simulated concentrations is 

rather small.  At the shallow depth (30 cm) concentrations range from 0.3 to 0.5 mg/L B; at 200 cm depth the 

concentrations range from 0.4 – 0.5 mg/L B. Note that the slightly larger variation at the shallow depth is 

influenced by the temporal variability in the water flux; deeper in the soil profile such variations typically 

become smaller (e.g. Mallants et al., 2017). Overall the boron concentration as a result of irrigation increases 

by about a factor of four compared to the warming up period (where small amounts of boron were added 

from rainfall, i.e. 0.05 mg/L). Note that through irrigation 0.33 mg/L B is added to the soil profile. This 

accounts for the total increase in B concentration, i.e. from about 0.1 mg/L to about 4.5 mg/L.  

Soil materials Initial solute
concentration

Observation 
nodes

1

2

3

4

5

200 cm

100 cm

60 cm

30 cm

10 cm1.50

14.28

28.46

19.24

20.47
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The variability in boron concentration in the irrigation water was also tested. Three scenarios are considered, 

with the following boron concentrations: 0.2 mg/L (minimum), 0.3 mg/L (mean), and 0.5 mg/L B (maximum), 

as per the statistical parameters from Table 18. As expected, simulated boron concentrations in the soil 

profile react in a linear way to the increased concentration in the irrigation water. For example, the maximum 

B concentration (0.5 mg/L) in irrigation water is about 2.5 times larger than the minimum concentration (0.2 

mg/L). As a result, the boron concentration in the soil for the former conditions is also about 2.5 times larger 

than for the latter, i.e. about 0.7 mg/L versus 0.3 mg/L (Figure 38). This is true for all depths. Interestingly, 

the variation in B concentration as a result of variation in irrigation water quality is larger than the variation 

in B concentration due to variability in adsorbed boron (Figure 37). This illustrates that one of the key factors 

to manage B in soil is through managing the B concentrations in the irrigation water.  

In developing sorption models for boron different Langmuir isotherm parameters were derived that resulted 

in two types of sorption profiles, i.e. Type-1 and Type-2 (Appendix 11). The sensitivity of boron leaching 

towards these sorption models was tested by running two scenarios, one with the Type-1 and the other with 

the Type-2 data. As can be seen in Appendix 11, boron leaching is not sensitive to the variation in these 

parameters (at least not for the variability considered here). Indeed, a nearly identical boron behaviour is 

observed for both scenarios at all soil depths.  

By testing the sensitivity of boron leaching towards several key sources of variability (and thus uncertainty), 

we demonstrated that the leaching model is least sensitive to the natural soil variability (sorbed boron 

concentration and sorption models) and most sensitive to the variation in boron concentration in the 

irrigation water. Considering the mean boron concentration in irrigation water, simulations showed that 

boron in soil would increase by about a factor of four as a result of long-term irrigation. As the B concentration 

time series show, a quasi-steady state condition is achieved across all depths illustrating that there does not 

seem to be a long-term accumulation of B in the soil profile. Over time, an equilibrium is established between 

the boron added and that leaving the soil profile by drainage. Based on Figure 37 and Figure 38, such 

equilibrium is established after about 10 years at 30 cm depth and after 20 years at 60 cm depth, disregarding 

temporal variability due to climate variability. 

As can be expected, the final steady-state boron concentration in the soil pore water will also depend on the 

initial boron concentration prior to adding boron via the irrigation water. As the initial boron concentration 

(i.e., prior to adding boron containing irrigation water) in the pore water and on the solid phase increases, 

the relative effect on the long-term boron concentration will diminish. This means that soils with an already 

high boron concentration (potentially representing non-optimal growth conditions) will be at a lesser risk 

relative to soils with a much lower boron concentration. For instance, initial pore water boron concentrations 

in the range 0.2-0.3 mg/L may see an increase of a factor 2 at most. For initial boron concentrations of about 

1 mg/L, the increase is not more than 40% (results not shown). 
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Figure 37. Sensitivity analysis of boron leaching in hard red brown soil (Type-2 sorption parameters, Table 20). Effects 

of using different initial sorbed B concentration (minimum, mean, maximum). The α value was set to 10-5 × its base 

value. 

 

 

Figure 38. Sensitivity analysis of boron leaching in hard red brown soil (Type-2 sorption parameters, Table 20). Effects 

of using different B concentration in irrigation water. Mean = 0.33 mg/L B, Min = 0.2 mg/L B, Max = 0.53 mg/L B. The 

α value was set to 10-5 × its base value. 

Previous studies on boron toxicity in the NAP (e.g. Stevens et al., 2004) analysed soils from the current 

irrigation region around Virginia and compared virgin, uncropped sites with soils irrigated with recycled water 

(average boron concentration 0.36 mg/L) and bore water. It was found that after long-term (>28 years) 

irrigation with recycled water the boron concentration (1:5 water extract) in surface (0-10 cm) soils had 

increased to an average of 0.25 mg/L compared with approximately 0.1 mg/L in the virgin soils. At greater 

depths (10-20 cm), the increase was from 0.2 mg/L in the virgin soils to 0.38 mg/L in recycled water-irrigated 
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soils. The reported boron increases by a factor of 1.9-2.5 are similar to the simulated increases as shown in 

Figure 38. 

4.7.4 Conclusion 

Modelling long-term boron transport in soil is complicated by a number of factors, including rates of mineral 

dissolution, adsorption-desorption processes, linear or non-linear sorption, and instantaneous or kinetically 

controlled sorption. Based on best available data on boron in soils from the NAP region, the boron adsorption 

processes were derived by considering the following conceptual model: 

• Boron adsorption/desorption is governed by a two-site model, where boron is distributed across 

equilibrium sites (S1: sorption is instantaneous) and kinetically controlled sites (S2: sorption is time-

dependent). Best-estimate parameter values were derived for the fraction f of equilibrium sites S1 

and the kinetic mass exchange parameter α for S2 sites. Parameter f was found to vary between 0.32 

(most sites are kinetically controlled, i.e. S2 > S1) and 0.74 (most sites display instantaneous sorption, 

i.e. S1> S2). The α parameter had values between 0.1 and 0.31 day-1. Because α was derived from 

short-term desorption tests (96 hrs), the values are thought not to be representative for calculating 

long-term boron behaviour in soil. For this reason this parameter was arbitrarily decreased until 

realistic boron behaviour was simulated. Future work should address this uncertainty by developing 

longer-term desorption tests that produce kinetic parameters for long-term simulations.   

• Boron isotherms were derived as either linear (the Kd model) or non-linear (Langmuir or Freundlich 

model). The best estimate parameters from the Langmuir model were used in the simulations, as 

these provide greatest flexibility in describing the complex sorption process. 

Several modelling scenarios were undertaken and mainly served as a sensitivity analysis, given the 

uncertainty around key parameters such as the α parameter. By testing the sensitivity of boron leaching 

towards several key sources of variability (and thus uncertainty), we demonstrated that the leaching model 

is least sensitive to the natural soil variability (sorbed boron concentration and sorption models) and most 

sensitive to the variation in boron concentration in the irrigation water. Considering the mean boron 

concentration in irrigation water, simulations showed that boron in soil would increase by about a factor of 

four as a result of long-term irrigation. As the B concentration time series show, a quasi-steady state condition 

is achieved across all depths illustrating that there does not seem to be a long-term accumulation of B in the 

soil profile. Over time, an equilibrium is established between the boron added and that leaving the soil profile 

by drainage. 

While at shallow depths it may still take 5-10 years before an equilibrium condition has been established, for 

soils with low initial B measurable changes seem reasonable within 2 to 3 years. Therefore, additional 

experimental work, preferably field based investigations involving monitoring B in soil solution, adsorbed 

boron and leached boron, is worth exploring. Such data may help establish a simplified B mass balance, and 

should also be used to further parameterise models to make predictions for other unsampled soils (or for 

different B input concentration) and further into the future. 

Interestingly, the variation in B concentration as a result of variation in irrigation water quality is larger than 

the variation in B concentration due to variability in adsorbed boron. This illustrates that one of the key 

factors to manage B in soil is through managing the B concentrations in the irrigation water. The current 

simulations are preliminary results that need further corroboration, especially to get more representative 

sorption parameters. 

Importantly, the higher the initial boron concentration (i.e., prior to adding boron containing irrigation water) 

in the pore water and on the solid phases, the smaller the relative effect on the long-term boron 
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concentrations. This means that soils with an already high boron concentration will be at a lesser risk of 

concentrations increasing (i.e. minimal increase in B concentration in an already high background 

concentration, potentially suitable only to B tolerant crops) relative to soils with a much lower boron 

concentration (i.e. potentially noticeable increase in B concentration in a soil with low B background making 

the soil less suitable to grow crops with low tolerance to B). 

With reference to the boron tolerance/threshold classes listed for various crops (Table 17), the following 

preliminary conclusions can be made:  

• Moderately tolerant (2-4 mg/L B) to tolerant (4-6 mg/L B) class: crops such as lettuce, cabbage, and 

tomatoes are unlikely to be at risk of yield loss owing to their high tolerance to boron, only a small 

number of sites (<9%) have been identified with such high B levels (in the 2-6 mg/L range). Further 

addition of boron at current levels in irrigation water is not expected to increase boron in soil with 

already high B levels significantly.  

• Moderately sensitive (1-2 mg/L B) class: crops such as broccoli, red pepper, carrot, potato, and 

cucumber are unlikely to be at high risk of yield loss owing to their moderate sensitivity to boron, a 

small number of sites have been identified with B levels > 1-2 mg/L (<14%).  Further addition of boron 

at current levels in irrigation water is not expected to increase boron in soil with intermediate B levels 

(1-2 mg/L) substantially. 

• Sensitive (0.5-1 mg/L B) to very sensitive (< 0.5 mg/L B) class: crops such as lemon, grapefruit, 

avocado, orange, fig, grapes, walnut, and garlic could be at risk of yield loss under certain conditions, 

i.e. where B levels are either already high (above the crop threshold) or where irrigation may increase 

B levels from below the crop threshold to above their threshold (about 72% of hard red brown soil 

samples have B levels below the 0.5 mg/L threshold). 

4.8 Climate extremes and their impact on crop production 

4.8.1 Introduction 

Agricultural industries such as viticulture, perennial and annual horticultures can be impacted by climate 

extremes. In this study, the effect of climate extremes on crop growth and irrigation requirement in the NAP, 

South Australia, was investigated. The climate indices for historic (1985-2017) and future (2018-2050) climate 

were analysed to determine the frequency of extreme climate events, and its impact on the growth of 

horticultural crops (potatoes, carrots, and onions), fruit trees (vines, almonds, and pistachios), and broad 

acre crops (lucerne and pasture) (for details, see Appendix 12).  

Daily climate data for the historic climate (1970-2017) were obtained from the BOM, Edinburgh RAAF site 

(34.71°S, 138.62°E, elevation 17 m), while future climate (2018-2050) data were taken from the Goyder 

Institute climate change median climate projections (Charles and Fu, 2015). The median data is based on the 

downscaled series obtained from the GFDL – ESM2M Global Climate Model (GCM)7, one of the six better 

performing GCMs, which are deemed to provide more realistic inputs for impacts and adaptation assessment 

than those from the six poorer GCMs. Note that the range of possible future climate change is larger than 

that obtained from only using the downscaled results from the six better GCMs. The median decrease in 

annual rainfall by 2050 is 6.8% (relative to 1986-2005 baseline), the 10th percentile decrease is 8.8%, and the 

95th percentile decrease is 3.5% (for the intermediate-emission Representative Concentration Pathway 

 
7 NOAA Geophysical Fluid Dynamics Laboratory, USA  
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RCP4.58). A single climate future is used rather than a range of futures to keep the overall number of 

modelling scenarios to a practical number. As a result, the simulations present one possible outcome. In 

addition, a number of other uncertainties are not captured in the soil model. However, the tools developed 

through the project are available to further test additional future climate scenarios. 

The median and range (10th to 95th percentile) increase in annual maximum daily temperature is 1.3°C, 1.1°C, 

and 1.5°C, respectively (for the intermediate-emission Representative Concentration Pathway RCP4.59) 

(Charles and Fu, 2015).  

4.8.2 Methods and materials 

A total of ten climate indices were considered here and include i) mean of daily average temperature, ii) 

mean of daily maximum temperature, iii) mean of daily minimum temperature, iv) mean difference between 

the daily maximum and minimum temperature, v) the number of days when daily maximum temperature 

exceeds 35°C (extremely hot days), vi) the number of hot spells10, vii) number of days when daily precipitation 

drops below 1 mm (dry days), viii) the number of dry spells11, ix) number of days when daily minimum 

temperature goes below 0°C (extremely cold or frost days), and x) number of days when daily minimum 

temperature in winter is below 7.2°C (chilling days). These indices were calculated using climate parameters 

such as temperature, precipitation, and humidity for historic (1985-2017) and future (2018-2050) climate 

data. Note that to have the same number of data points in historic and future time series, both time series 

were limited to 32 years each.   

4.8.3 Results and discussion 

Effects of extreme climate events are illustrated for the following climate indices: number of days when daily 

precipitation drops below 1 mm (dry days), the number of dry spells, and the number of days when daily 

minimum temperature in winter is below 7.2°C (chilling days). We also illustrate the effect of a drier and 

hotter climate on annual irrigation requirements. 

A dry day is defined when daily rainfall is less than 1 mm. The cumulative distribution function (CDF) for both 

historic and future climate data (Figure 39) indicates a greater occurrence of dry days in the future compared 

with the historic data, with generally an equal shift towards more dry days across all percentiles. For example, 

on average (50th percentile), the number of dry days increases from 290 to 296. This is an increase by about 

2.1 %. Additionally, the number of spells of three or more dry days (dry spells per year) with rainfall less than 

1 mm will on average (50th percentile) increases from 81 to 86 per year (Figure 40). This is an increase by 

about 6.2 %. 

Fruit trees such as almonds and pistachios require a minimum period of cold winter weather after which 

a fruit-bearing tree will blossom. The chilling requirement can be calculated as chilling hours (or chilling 

days), which is the sum of total amount of time in a winter spent at certain temperatures (Lockwood and 

Coston, 2005; Texas A&M University Agrilife Research & Extension, 2019). The adequate amount of winter 

chilling results in homogeneous and simultaneous flowering (Luedeling et al., 2009a; PGAI, 2019). In South 

 
8 RCP4.5 is a scenario of long-term, global emissions of greenhouse gases, short-lived species, and land-use-land-cover which 

stabilizes radiative forcing at 4.5 W m−2 (approximately 650 ppm CO2-equivalent) in the year 2100 without ever exceeding that 

value (Moss et al., 2010).  
9 RCP4.5 is a scenario of long-term, global emissions of greenhouse gases, short-lived species, and land-use-land-cover which 

stabilizes radiative forcing at 4.5 W m−2 (approximately 650 ppm CO2-equivalent) in the year 2100 without ever exceeding that 

value (Moss et al., 2010).  
10 Three to five consecutive days above 35 °C; six or more days above 35 °C are counted as two hot spells. 
11 Three or more consecutive days with less than 1 mm of rain 

https://en.wikipedia.org/wiki/Weather
https://en.wikipedia.org/wiki/Fruit-bearing_tree
https://en.wikipedia.org/wiki/Blossom
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Australia, almonds (Pitt et al., 2013) require a winter chilling period of 400–900 hours (≈ 16.5–37.5 days) and 

pistachios require a winter chilling period of 600–1050 hours (≈ 25–43.75 days) below 7.2 °C (Küden et al., 

1994) to initiate flowering. Figure 41 shows that the annual number of chilling days in the future will decrease 

on average by 4 days (or about 7.7 %).   

 

Figure 39. Cumulative distribution function for number of days (per year) with a rainfall less than 1 mm for historic 

(1985-2017) and future (2018-2050) climate data.  
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Figure 40. Cumulative distribution function for number of spells (3 days or more with rain < 1 mm) per year with for 

historic (1985-2017) and future (2018-2050) climate data. 

 

Figure 41. Cumulative distribution function for number of annual chilling winter days (with a temperature less than 

7.2°C) for historic (1985-2017) and future (2018-2050) climate data. 
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Figure 42 shows the CDF of annual irrigation requirement (IR) under current and future climate for potato 

(for other crops, see Appendix 12), cultivated on various soils in the NAP region. Results show that crops will 

require more annual irrigation under future climate, depending on the soil textures and crop stress tolerance. 

Regardless of the crop type, sand over clay soils require the highest irrigation while deep uniform to 

gradational soils need the lowest irrigation among all soils. 

 

 

Figure 42. Cumulative distribution function of annual irrigation requirement for potatoes under historic and future 

climate.  

4.8.4 Conclusion 

The NAP region of South Australia will likely be subjected to warming in the near future, based on greater 

daily temperature indices and frequency of hot days relative to historic climate. There will also be a higher 

frequency of dry days (with rainfall less than 1 mm) and dry spells. The NAP region, following global climate 

change predictions, will likely also be subjected to milder winters based on lower frequencies of frost and 

chill days.  
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Previous research for the NAP region by Thomas et al. (2010) indicated that perennial horticultural crops will 

be most severely affected by a hotter climate, followed by viticulture, annual horticulture, then cropping and 

livestock (not assessed here). Climate parameters considered in the assessment were mean temperatures, 

number of hot days and frequency and length of heat waves, decline in winter, spring and autumn rainfall, 

increased irrigation demand, and summer rainfall increase. A summary of impacts for annual horticultural 

crops (vegetables and associated fruits) and annual field crops (cereals, canola and legume crops) is provided 

in Table 21. Our current analysis builds on this earlier work and confirms their main conclusions, now 

underpinned with climate data and soil water balance modelling. 

Table 21. Summary of key impacts from extreme climate on crops in the NAP region (from Thomas et al., 2010). 

CLIMATE PARAMETER ANNUAL HORTICULTURAL CROPS ANNUAL FIELD CROPS 

Mean temperature increase Encourage faster growth, earlier harvest or 

more crop rotations per year. 

Root and tuber growth become 

disadvantaged (potatoes, carrots).  

Speed up plant development resulting in 

insufficient biomass accumulation. 

Faster developmental phenology 

increases risk of extreme cold events. 

 

More hot days; greater frequency 

and length of heat waves 

Visual damage to leaves and fruit. 

Damage to reproductive crop 

components. 

Affect flowering and reduce wheat 

yields. 

 

Decline in winter, spring and 

autumn rainfall 

Increased irrigation costs. Yield is strongly related to cool season 

rainfall. 

Increased irrigation demand Reduced availability of good quality 

irrigation water. 

Most field crops are not irrigated. 

Increase in summer rainfall Increased risk for leaf and fruit diseases. 

Flooding risk and spreading of soil borne 

diseases and weeds. 

Increased risk of crop diseases. 

 

Based on the current study, the following consequences are anticipated for the crops in the NAP region, as 

the result of these climatic shifts: 

• Potatoes will likely have a decreased yield and a higher risk to being invaded by pests. 

• The growth and yield in carrots may be stimulated due to increased frequency of hot and dry days. 

Extreme heat events may reduce the quality of carrots and mid-season drought stress can depress 

the yield in carrots.  

• Warmer climate may reduce the duration of crop growth, yield, and seed production for onions; 

lower rainfall conditions may reduce the risk of infection by pests (i.e., leaf blight).  

• The projected drought and extremely hot weather in the NAP region is expected to negatively impact 

vines, which may result in poor budburst, leaf loss, bunch damage, and consequently low yield and 

production or even crop loss.  

• For almonds and pistachios, it is expected that their yield and production may be impacted by 

drought in the NAP region if not properly managed. While the current NAP climate hardly 

accommodates chill requirements for these fruits, the projected climate shows there would be some 

years that this requirement cannot be met at all.  
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• As the NAP region will likely be subjected to an increased number of hot days, a decline in pasture 

production is anticipated for this region. 
 

In order to understand the effect of weather extremes on irrigation practices, the irrigation requirement for 

abovementioned crops was calculated using the FAO-56 dual crop coefficient method (for details see this 

report, Appendix 7). The irrigation requirements for these crops were compared under historic and future 

climate scenarios to provide insights of future climate impact. Results showed that crops will require a higher 

amount of annual irrigation under the future climate, depending on the soil textures and crop stress 

tolerance. Regardless of the crop type, sand over clay soils require the highest irrigation (714 – 956 mm) 

while deep uniform to gradational soils need the lowest irrigation (643 – 910 mm) among other soils. It was 

concluded that annual horticultural crops could face more irrigation related risks in the future climate as 

compared to deep rooted perennial horticultural crops. 

The results of water balance simulation showed that under future climate, pastures on deep uniform to 

gradational soils will experience 243 extra water stress days (over a 32 year period) compared to historic 

climate, or 7.6 days per year. Over the 32 years period, hard red brown soils will experience 105 extra water 

stress days or 3.3 per year under future climate. This implies that pasture’s yield and production will be 

reduced if not irrigated.  

To improve understanding of how crops might respond to more extreme climate conditions, the concept to 

climate analogues can be considered. This concept is based on (i) finding sites whose current climate more 

or less corresponds to the projected climate on the NAP, and (ii) collecting yield data on relevant crops that 

are growing in those areas. For example, potato production occurs around Lameroo (Murray Mallee region 

of South Australia), which is slightly warmer than the NAP (22.9°C mean maximum versus 22.7°C), more 

prone to heatwaves and drier (382 mm versus 475 for NAP). Another example exists for wine grape 

production, with potential climate analogues in the Riverland, Sunraysia and Riverina (Thomas et al., 2016). 

A systematic study of such analogues would provide a valuable data set to complement the predicted impacts 

and develop improved recommendations for growers and water managers around impacts from climate 

change.   
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5 Conclusions and recommendations 

5.1 Estimating annual irrigation requirements under historic and future 
climate 

Planning for the extension of irrigated cropping area in the NAP requires that reliable estimates of annual 

irrigation requirement are available for expected soil-crop-climate conditions. The estimated average annual 

irrigation requirement for the historic climate of the region was 407, 989, 798, 1041, 1017, 655, and 573 mm 

for wine grapes, almonds, pistachios, pasture, carrots, onions and potato crops, respectively.  

For all crop types, sand over clay soils had the overall largest irrigation requirement (384-1089 mm), while 

deep uniform to gradational soil had the lowest irrigation requirement (310-990 mm). Pasture had the 

highest average annual irrigation requirement (993-1089 mm), while wine grapes required the least amount 

of irrigation (306-384 mm).  

The average annual irrigation requirement under future climate increased by 3.5-5.8, 6.0-7.2, 3.0-4.5, 7.0-

8.4, 6.2- 7.4, 9.2-10.3, and 8.8-11.0% for grapes, almonds, pistachios, pasture, carrot, onion and potato crops, 

respectively, with the variation for a particular crop depending on the soil textures and year-to-year climate 

variability. 

The above results are based on considering a single climate future rather than a range of futures to keep the 

overall number of modelling scenarios to a practical number. As a result, the simulations present one possible 

outcome. In addition, a number of other uncertainties are not captured in the soil model. However, the tools 

developed through the project are available to further test additional future climate scenarios. The single 

climate future has a median decrease in annual rainfall by 2050 of 6.8% for the region (relative to 1986-2005 

baseline); by comparison, the 10th percentile decrease is 8.8%, and the 95th percentile decrease is 3.5%   

5.2 Impact of long-term irrigation with recycled water on crop yield, soil 
salinity and sodicity 

The multicomponent UNSATCHEM module of HYDRUS-1D was used to evaluate the impact of long-term 

(2018-2050) use of recycled water (RW) on crop yield, soil salinity and sodicity. Simulations revealed that 

irrigation with recycled water can potentially increase the soil solution salinity (ECSW), sodium adsorption 

ration (SAR) and exchangeable sodium percentage (ESP). The average ECSW by the year 2050 in the soil profile 

under different crops in the 10th to 90th %tile range varied from 2.9-10.5 dS/m. The average EC in the upper 

soil layers (<30 cm) remained roughly below 4 dS/m for almonds (threshold ECSW = 3 dS/m), wine grapes 

(threshold ECSW = 3 dS/m), pistachios (threshold ECSW = 18.6 dS/m) and pasture (threshold ECSW = 11.2 dS/m). 

Under annual horticulture (carrot, onion, potato with thresholds of 2, 2.4, and 3.4 dS/m, respectively), salinity 

may rise between 4.9 and 9.5 dS/m due to upward movement of salts during the cover crop season. Average 

profile soil salinity at lower depths (> 30 cm) ranged from 3.6-10.8 dS/m under all crops.  

Increased salinity in the soil reduced the potential yield in almond by 12-20% in different soils, with higher 

yield loss in hard red brown soils, followed by calcareous soils.  No yield loss was observed in perennial 

pastures and pistachios as they are relatively salinity tolerant crops. Annual horticulture crops (carrots, 

onions, potatoes, brassicas) showed yield losses from 4-32% due to the increased salinity. 

Use of recycled water increased the soil SAR. After 32 years of irrigation, the simulated profile average SAR 

was 17.4, 15.8, 15.5, and 16.3 for calcareous, hard red brown, sand over clay and deep uniform to gradational 
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soils, respectively. These values were higher than the threshold SAR derived in this study (i.e. a SAR of 4, 3.5, 

6 and 3 for calcareous, hard red brown, sand over clay and deep uniform to gradational soils). The predicted 

profile average ESP increased by 22.7, 21.6, 19.4, and 10.5% in calcareous, hard red brown, sand over clay 

and deep uniform to gradational soils, respectively. These values were much higher than the accepted ESP 

thresholds (ESP > 6%) for Australian soils. In other words, high SAR and ESP build up in the soils as a result of 

recycled water irrigation could adversely impact the physical properties of soils. This could lead to clay 

dispersion, porosity and hydraulic conductivity reduction, and overall loss of structural stability of the soils 

which can severely impact the sustainable crop production, if no management intervention for mitigation 

occurs. 

5.3 Evaluation of soil management strategies for long-term irrigation 

The sustainable use of recycled water for irrigation requires designing and implementing effective farm-scale 

and regional-scale solutions. This modelling study evaluated the impact of long-term (2018-2050) 

management options when using recycled water (RW), and included the use of good quality (GW), blending 

RW and GW (B), and alternate use of RW and GW. Management options tested further included the annual 

application of varied rates of gypsum (0, 1.7, 4.3, 8.6, and 12.9 t/ha) to reduce sodicity hazards (SAR and ESP). 

Finally, simulations were also conducted to evaluate the impact of different leaching fractions (0.2, 0.3, 0.4, 

and 0.5) for reducing salinity and sodicity problems. 

In sandy soils, use of various irrigation water qualities had relatively little negative impact on salinity and 

sodicity, although the long-term use of RW may increase SAR and ESP to a level which could lead to structural 

problems in the soil profile. Adoption of gypsum at 4.3 t/ha/yr with 0.2 LF could suitably manage the hazards 

associated with the use of RW.  

In contrast, the degree of salinity and sodicity problems increased many folds in calcareous soils with long-

term use of RW. Annual gypsum applications of 8.6 t/ha decreased the SAR below its threshold (< 3), especially 

for the blended water type and the blending combinations, but not under RW. While the ESP reduced four 

fold with gypsum application (8.6 t/ha) and LF (0.5), the ESP was still higher than the threshold value (< 6%) 

for Australian soils, under all water quality combinations. Reliance on regular soil amendment with gypsum 

should be tempered by a better understanding of soil water interactions, clay mineralogy and the fate of salts 

as well as the effectiveness of drainage in the NAP soils. 

Hard red brown (HRB) soils developed the overall highest salinity and sodicity levels, regardless of water 

types used. Gypsum application at 8.6t/ha with a LF of 0.5 decreased the ECSW to become close to the 

threshold for almonds. This gypsum application resulted in ESP values that were still higher than the critical 

threshold value of 6% for Australian soils for all irrigation scenarios and at all soil depths. 

5.4 Impact of irrigation under greenhouse cropping conditions  

The effects of long-term (2018-2050) irrigation with blended water for soil grown tomato, cucumber, 

capsicum and eggplant under unheated greenhouse conditions were evaluated. The results revealed that 

irrigation schedules that do not apply a significant leaching fraction may lead to high salt build up and ESP 

development in the soil while accounting for future climate projections. The soil solution salinity (ECSW) 

increased to 6.5-9 dS/m at year 2050 and ESP increased to 27-33% for all crops considered. These conditions 

could render the soil unfit for crop production and could potentially degrade the associated environment. 

Therefore, appropriate management options should be implemented to keep the irrigation induced harmful 

impacts under control.  
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The study evaluated the efficacy of increased leaching and gypsum application to control salinity and sodicity. 

Management scenarios with different leaching fractions for salinity control showed that 15-20% more water 

per irrigation would be required to keep the salinity under control for soil grown greenhouse vegetables. 

Results obtained in various scenarios for amelioration of soil with high ESP suggested that annual gypsum 

application at a rate of 1.7 t/ha was adequate for managing this hazard. Ideally, both management options 

(i.e. leaching fraction and gypsum use) need to be implemented simultaneously. Finally, long-term 

monitoring of highly efficient greenhouse production systems is essential for early identification of irrigation 

induced soil issues.  

5.5 Optimising riparian zone widths to control lateral solute migration 

Major findings from the two-dimensional simulations with HYDRUS (2D/3D) around optimising riparian zone 

widths to control lateral solute migration from irrigated fields to streams, include: 

• The hydraulic exchange at river interface for different irrigated crops was found to be sensitive to 

the buffer widths.  

• The likely average annual water flow from the almond and annual horticulture irrigated area to the 

river was nearly twice as much (2.1 and 1.8, respectively) than under wine grapes.  

• For wine grapes, almonds and annual horticulture, the average annual hydraulic balance reached an 

equilibrium at 20, 65 and 55 m buffer widths, respectively.  

• The average annual load of salts became negligible for wine grapes with a 20 m buffer width.  

• Buffer widths of 20, 60, and 40 m for irrigated wine grapes, almond, and annual horticulture, 

respectively, are needed to restrict the migration of salts to the river.  

 

It is suggested that there is a strong need to revise the existing riparian width guidelines for maintaining good 

water quality in surface water bodies near RW irrigated crops. Further refinements are possible by 

incorporating the influence of preferential flow paths, improved water stress response functions, and 

addressing the data limitations for calibration of the model for solute dynamics. 

5.6 Boron risks associated with recycled water irrigation 

Based on best available data on boron in soils from the NAP region, the boron risks associated with long-term 

use of recycled water irrigation containing low levels of boron were evaluated. Adsorption processes were 

derived by considering a two-site kinetically controlled sorption model with non-linear sorption. 

Several modelling scenarios were undertaken and mainly served as a sensitivity analysis, given the 

uncertainty around key parameters such as the kinetic parameter controlling time-dependent 

sorption/desorption. By testing the sensitivity of boron leaching towards several key sources of variability 

(and thus uncertainty), we demonstrated that the leaching model is least sensitive to the natural soil 

variability (sorbed boron concentration and sorption models) and most sensitive to the variation in boron 

concentration in the irrigation water. Considering the mean boron concentration in irrigation water, 

simulations showed that boron in soil would increase by about a factor of four as a result of long-term 

irrigation. As the B concentration time series show, a quasi-steady state condition was achieved across all 

depths illustrating that there does not seem to be a long-term accumulation of B in the soil profile. Over time, 

an equilibrium was established between the boron added and that leaving the soil profile by drainage. 

Importantly, the higher the initial boron concentration (i.e., prior to adding boron containing irrigation water) 

in the pore water and on the solid phases, the smaller the relative effect on the long-term boron 
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concentrations. This means that soils with an already high boron concentration will be at a relative lesser risk 

relative to soils with a much lower boron concentration. 

Interestingly, the variation in B concentration as a result of variation in irrigation water quality was larger 

than the variation in B concentration due to variability in adsorbed boron. This illustrates that one of the key 

factors to manage B in soil is through managing the B concentrations in the irrigation water. The current 

simulations are preliminary results that need further corroboration, especially to get more representative 

sorption parameters. 

5.7 Climate extremes and their impact on crop production 

The NAP region of South Australia will be subjected to warming in the near future, based on greater daily 

temperature indices and likely frequency of hot days relative to historic climate. There will likely also be a 

higher frequency for dry days (with rainfall less than 1 mm) and dry spells compared with historic data. The 

NAP region, following global climate change predictions, will likely be subjected to milder winter climate 

based on smaller frequencies of frost and chill days.  

The following consequences are anticipated for the crops in the NAP region, as the result of these climatic 

shifts: 

• Potatoes will likely have a decreased yield and a higher risk to being invaded by pests. 

• The growth and yield in carrots may be stimulated due to increased frequency of hot and dry days. 

Extreme heat events may reduce the quality of carrots and mid-season drought stress can depress 

the yield in carrots.  

• Warmer climate may reduce the duration of crop growth, yield, and seed production for onions; 

lower rainfall conditions may reduce the risk of infection by pests (i.e., leaf blight).  

• The projected drought and extremely hot weather in the NAP region is expected to negatively impact 

vines, which may result in poor budburst, leaf loss, bunch damage, and consequently low yield and 

production or even crop loss.  

• For almonds and pistachios, it is expected that their yield and production may be impacted by 

drought in the NAP region if not properly managed. While the current NAP climate hardly 

accommodates chill requirements for these fruits, the projected climate shows there would be some 

years that this requirement cannot be met at all.  

• As the NAP region will likely be subjected to an increased number of hot days, a decline in pasture 

production is anticipated for this region. 

• Annual horticultural crops could face more irrigation related risks in the future climate as compared 

to deep rooted perennial horticultural crops. 

 

The results of the water balance simulation demonstrated that under future climate, pastures on deep 

uniform to gradational soils will experience 243 extra water stress days (over a 32 year period) compared to 

historic climate, or 7.6 days per year. Over the same period, hard red brown soils will experience only 105 

extra water stress days or 3.3 per year under future climate.   
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