Research focus: Environmental Water

The Environmental Water theme developed a detailed understanding of the ecosystems of our major water resources including the River Murray and the wetland systems in the South-East of South Australia.

These systems contain several RAMSAR wetlands of international importance which required a robust integrated management approach to maintain the environmental values of these regions while also achieving social and economic outcomes.

The Goyder Institute demonstrated the value and effectiveness of its collaborative research approach by quickly responding to urgent and time-critical opportunities such as the 2010 floods and the consultation and review processes of the Murray Darling Basin Plan development.

Goyder Institute advice underpinned the South Australian Government’s successful negotiation of the Basin Plan resulting in $1.77 billion in additional funding to return 3200 GL of water to the environment, and to remove constraints that impede delivery of that water.

This research produced a series of reports, publications and research materials:

Murray Darling Basin Plan and Review

The Murray Darling Basin Plan was signed into law in December 2012 and the Goyder Institute was involved with the analyses of the consequences of this Plan from very early on:

  1. In November 2010 the South Australian Government invited the Goyder Institute to review the Guide to the Proposed Plan and to determine whether the proposed sustainable diversion limits would meet the Government’s environmental water requirements and improve or maintain water quality. The project produced a synthesis report that describes the findings of the science review.
  2. The draft Basin Plan was released for consultation in November 2011 and the South Australian Government sought advice from the Goyder Institute on the likely ecological consequences for South Australia of the proposed Plan. The Goyder Institute assembled an Expert Panel to review the science underpinning this assessment for South Australian environmental assets. The Expert Panel report recommended that a wider range of possible scenarios be evaluated including additional volume and the relaxation of constraints.
  3. Following the modelling of additional water recovery scenarios by the Murray Darling Basin Authority, a detailed evaluation of the model outputs was undertaken by SA Government scientists and peer-reviewed by the Goyder Institute.

This work by the Goyder Institute provided the South Australian Government with the necessary confidence about the quality of the assessments and the science that was used to underpin policy development, to support the negotiations with the Federal Government for a better plan that delivers enough water for the health of the river and its floodplains.

River Murray Catchment Program and e-water management

Murray Flood Ecology

A better understanding of the ecological responses of the River Murray and its floodplains to flooding has provided new knowledge for the development of annual and long-term watering plans under the Murray Darling Basin Plan. To achieve the greatest ecological benefits from available environmental water in the River Murray, it is vitally important to know how the biological systems respond to various flow scenarios (e.g. timing, volumes, duration, frequency, flow rates etc).

Flood flows returned to the Murray-Darling River in 2010 after the Millennium Drought enabling Goyder Institute scientists to undertake an analysis of how the river channel, floodplain vegetation and fish populations respond and recover when water is restored to the system after such a long period of drought.

Immediately following the floods in 2010, the Goyder Institute undertook a field study to investigate the change in abundance and species diversity of native fish populations in the lower River Murray during these changing hydrological conditions. The results have been published in a technical report entitled From drought to flood: annual variation larval fish assemblages in a heavily regulated lowland river.

The larger investigation includes a number of reports detailing the scientific findings from a number of the components of the research including fish, vegetation, metabolic activity.

Research requirements for e-water management in the South Australian Murray Darling Basin

This project focussed on the entire SA MDB including the riverine, floodplain, wetland habitats and the Coorong and Lower Lakes. The primary aim of the project was to identify research that is required to support decisions regarding the provision of environmental water.

This was achieved by:

The information was brought together in an adaptive management framework that can:

A scoping report was developed synthesising the existing knowledge and recommending areas to focus further research.

South East research program

Groundwater supports the economic base of the South East through irrigation, town and industry water supplies. The water resources of the South East need to be managed as a holistic system, recognising the interconnection between surface water and groundwater to maximise the economic and social benefits of regional water resources and to ensure adequate environmental water provisions to the region’s wetland systems including the Coorong.

South East Regional Water Balance

This project laid the foundations for the development of a regional water balance model, to facilitate future water allocation planning for the Lower Limestone Coast region. It consisted of the development of a regional water balance framework and a preliminary assessment of the spatial variability and indicative fluxes of groundwater discharge to the marine environment. It also included an assessment of the role of geological faults on regional groundwater flow and inter-aquifer leakage. The major output from this work was a framework for the development of a regional numerical groundwater flow model for the Lower Limestone Coast region. This comprises the datasets, conceptual model and the suggested approach for the full development of a fit-for-purpose regional model.

Improved Modelling of the Catchments and Drainage Network in the Upper South East for Management Outcomes

This project developed a software tool based on conceptual and stochastic modelling designed to improve confidence in flow volumes that can be expected along Drain M, located in the Lower South East. This tool enabled a season to be assessed and then translated into a seasonal operational plan, while providing clear information for decision-making. The model allowed water volume information to be estimated in order to support decisions about optimisation of environmental water requirements for a number of regional assets, including Lake George.

Developing ecological response models and determining water requirements for wetlands in the South East of South Australia

This project provided information on wetland ecosystem response to changes in water quantity and quality (salinity). Eco-hydrological conceptual models were created to describe the response of wetland plant assemblages for selected wetland sites to altered hydrological conditions. This involved determining historical trends in wetland plant assemblages in response to hydrological regimes using remote sensing techniques, and identifying thresholds for changes in habitat and wetland plant assemblages in response to principal drivers of wetland type (e.g. changes in water and salinity regime). A classification system for wetlands and vegetation assemblages was also developed as a basis for applying conceptual models of different wetland types at a landscape scale.

Riverbank Collapse

This three-year project provided a clear understanding of the processes that trigger riverbank collapse.

It stems from the many bank collapses at various parts of the lower River Murray from Blanchetown to Wellington during the 2009/2010 drought when the river was at one metre below sea level and about two metres below its normal level. 

The River Murray is one of the few river systems in the world that can fall below sea level because of the barrages preventing the inflow of sea water during low river flows, but there is limited recorded evidence of previous collapse incidents.

At the end of the project researchers defined safe operating levels for the river, allowing management and intervention by State and Local Government. They also established long-term sustainable options for higher risk sites.

Other outcomes included:

Chris Wright

Manager Water Science, DEW

Chris Wright holds significant experience in public sector senior leadership, having led policy, scientific and operational business units over the last twelve years in both State and Commonwealth government agencies. Chris has excellent experiences in leading policy and strategy formulation. He is skilled in building and maintaining networks across the public and private sectors to facilitate business delivery; leading and negotiating with others to achieve outcomes; and in bridging the science-policy gap, drawing on earlier roles in geospatial information systems (GIS) consulting. Chris’s formal qualifications include a Bachelor of Social Science, a Masters of Spatial Information Science and graduation from the AICD Company Directors course in 2019.

Dr Ilka Wallis

Senior Lecturer, Flinders University

Dr Ilka Wallis is a hydrogeologist with areas of expertise in quantitative hydrogeology and geochemistry. Ilka focuses on the development of reactive geochemical transport models which integrate fundamental processes that are normally studied in isolation (hydrogeological, mineralogical, geochemical and biochemical).

Ilka is also an Adjunct Professor, Department of Civil Engineering, University of Manitoba, Canada since 2017.

Peter Goonan

Environmental Science Branch, EPA

Peter Goonan is the Principal Aquatic Biologist in the Environmental Science Branch of the EPA. He has over 30 years’ experience monitoring the condition of aquatic ecosystems in SA and assessing the environmental effects caused by discharges, deposits and contaminants entering inland and coastal waters. He specialises in aquatic invertebrate identification and their responses to contaminants and water quality stressors. He also provides expert professional advice relating to water quality risks, regulation, policy, and strategic directions, and represents the EPA as an expert witness in court.

Dr Paul Monis

Manager, Research Stakeholders and Planning, SA Water

Dr Paul Monis is a technical expert within SA Water’s Business Services group, which provides scientific expertise to support the delivery of water and wastewater services to SA Water’s customers. He has specialist expertise in the areas of biotechnology and microbiology, with almost 20 years’ experience applying DNA-based and other technologies to address water quality challenges posed by microorganisms, especially enteric pathogens. Dr Monis also holds title of Adjunct Associate Professor at Flinders University, the University of Adelaide and UniSA.

Jennie Fluin

Principal Advisor Research Partnerships, DEW

Jennie’s role in the Department for Environment and Water (DEW) allows her to foster and strengthen opportunities for researchers to better connect with government to enable evidence-based decision making. Jennie has extensive experience working in both universities and government, allowing her to bridge the divide between the two sectors. She is focused on connecting natural resource researchers with natural resource decision makers, and facilitating fit for purpose partnerships.

Dr Tanya Doody

Principal Research Scientist, CSIRO

Dr Tanya Doody is a Principal Research Scientist working on high impact spatial eco-hydrological projects within CSIRO’s Land and Water Business Unit. Dr Doody leads the Managing Water Ecosystems Group, based in Adelaide, Albury and Canberra and has significant experience in quantifying the water requirements of vegetation and at times, their impact on water resources. This involves ecophysiological field-based research to underpin remote sensing tools to scale regionally to improve our understanding of the effect of flood regimes on the health of water-dependent ecosystems on the Murray-Darling Basin floodplains. Additional research includes investigating the ecological response of vegetation to water availability and environmental water to inform integrated basin water planning and management.

Professor Lin Crase

Dean of Programs (Accounting & Finance), UniSA

Professor Lin Crase is Professor of Economics and Dean of Programs (Accounting & Finance) at UniSA. He joined UniSA in February 2016 as Head of School of Commerce. Prior to commencing at UniSA, Lin was Professor and Director of the Centre for Water Policy and Management at La Trobe University.

Lin’s research has focused on applied economics in the context of water. He has analysed water markets and the property rights that attend them, water pricing and numerous applications of water policy. Whilst his expertise includes the Murray-Darling Basin in Australia, he has also worked on projects in south Asia, Japan and Europe. Lin has published over 100 journal articles, numerous book chapters, four books and a range of other papers and opinion pieces.

Professor Justin Brookes

Director, Water Research Centre, University of Adelaide

Justin has broad research interests in limnology and water treatment with a primary focus on coupling between hydrodynamics, biology and water quality contaminants such as cyanobacteria and pathogens. He is a founding member of the management committee of the IWA Specialist Group on Lake and Reservoir Management and member of the Steering Committee for the Global Lakes Ecological Observatory Network.

Justin has a PhD and a Bachelor of Science degree with Honours from the University of Adelaide.

Daniel Flaherty


Daniel Flaherty is the Accountant for the Goyder Institute for Water Research.

Daniel has extensive experience in higher education having worked in senior financial management roles at the University of South Australia, Flinders University and the University of Adelaide over the past 26 years. Daniel has also been a Board Director on a number of university related entities. Prior to that, Daniel has worked in a range of agencies in the Commonwealth and State Governments.

Daniel is a Fellow of CPA Australia and has a Bachelor of Economics from the University of Adelaide.

Dr Alec Rolston

Interim Director

Alec Rolston joined the Institute in 2021 as Research Program Manager of the Goyder Institute’s research projects in the Healthy Coorong, Healthy Basin program. He has extensive experience in integrated water resource management, integrated catchment management, drinking water source protection and wetland ecology, conservation and management across Europe and Australia.

Alec holds a PhD from the National University of Ireland Maynooth and has worked with An Fóram Uisce|The Water Forum and the Dundalk Institute of Technology in Ireland as well as the MANTEL Innovative Training Network across Europe.

Alec spent his early career in Adelaide working with Flinders University through the Coorong, Lower Lakes and Murray Mouth (CLLAMM) Ecology Research Cluster and within the Department for Environment and Water.

Daniel Pierce

Research and Development Officer

Daniel Pierce has managed research projects at the Goyder Institute for Water Research since November 2017 under both the second and third terms of the Institute.

Daniel brings experience in project management and knowledge transfer and application from 4 years working as a Senior Hydrogeologist in the Department for Environment and Water (DEW) in South Australia and from 13 years of private sector work in environmental management, science and engineering in Australia and the South Pacific. His work with DEW has included providing technical advice to the development and revision of Water Allocation Plans around South Australia in collaboration with researchers and policy makers, and managing a team of groundwater modellers and hydrogeologists involved in an assortment of water resource management issues.

Daniel has a Bachelor of Engineering (Hons, Environmental) and a Bachelor of Science (Geography) from the University of Western Australia.

Professor Enzo Lombi

Dean of Research, UniSA STEM

Professor Lombi’s main contributions to environmental research cover various aspects of contaminant risk assessment, biogeochemistry, ecotoxicology and waste management. Furthermore, the methodological development he has pursued in his research has provided the basis for collaborative efforts in a variety of research areas ranging from soil fertility and plant physiology to human health issues related to contaminant uptake via occupational exposure and diet. In the last few years he has been increasingly focusing on the transformation and toxicity of manufactured nanomaterials in the environment.

Dr Carmel Pollino

Research Director Land and Water, CSIRO

Dr Carmel Pollino is a Research Director for Land and Water at CSIRO. She has 20 years of experience working on water issues in Australia and throughout Asia. Carmel has degrees in science and environmental law and works across the science and policy interface. Significant areas of research in Environmental Flows, Hydrology, Ecology and Integrated River Basin Planning. Carmel is the lead and also a contributor to global working groups on water and has published widely in this domain.

Professor Bronwyn Gillanders

Head of School of Biological Sciences, The University of Adelaide

Professor Bronwyn Gillanders is interim Head of School of Biological Sciences at the University of Adelaide. Prof Gillanders completed her BSc at the University of Canterbury, MSc at the University of Otago and her PhD at the University of Sydney. She has a research background in environmental science focused predominantly on freshwater and marine ecology.

Her research interests include integrated marine management; coastal carbon opportunities; multiple use activities and cumulative impact assessment; biology, ecology and fisheries of cephalopods; stocking and provenance of fish; plastics in the marine environment including in seafood; use of fish bones (and other calcified structures) for assessing ecological and environmental change. She has trained and mentored ~70 Honours and Higher Degree Research students and shaped the future of 1000s of students through her undergraduate teaching. She is passionate about encouraging capable women to enter and remain in science careers.

Dan Jordan

Director, Water Security, Policy and Planning, Department for Environment and Water (DEW)

Dan Jordan is the Director, Water Security, Policy and Planning, Department for Environment and Water (DEW). Dan is also the Basin Officials Committee Alternate Member for South Australia.

Professor Okke Batelaan

Dean, School of the Environment, Flinders University

Professor Okke Batelaan is a graduate of the Free University of Amsterdam, Netherlands (MSc – Hydrogeology) and of the Free University Brussels, Belgium (PhD – Engineering). He worked for more than 20 years at the Free University Brussels and also led the hydrogeology group at the KU Leuven, Belgium since 2006. He was chairman of the Interuniversity Programme in Water Resources Engineering.

Since 2012 Okke Batelaan is Strategic Professor in Hydrogeology and currently Dean of the School of the Environment, Flinders University. Okke has broad experience in teaching groundwater hydrology, groundwater modelling, GIS and remote sensing for hydrological applications. He was supervisor of more than 140 MSc and 25 PhD students. He has extensive research experience and a publication record in shallow groundwater hydrology and modeling, recharge-discharge estimation and modeling, urban hydrology and distributed modelling, ecohydrology and impacts of land use and climate change on groundwater systems. He coordinated and participated in a large number of projects in Europe, Africa, South America, Asia and Australia. He is editor-in-chief of Journal of Hydrology: Regional Studies and of MDPI-Hydrology.