Finding ancient water in the outback – new research to support remote communities and enterprises

Water is scarce in outback areas and yet essential to help communities survive as well as increase opportunities for investment in remote regions. With water scarcity expected to become more apparent in the future, new, sustainable water sources will be required. New research released from the Goyder Institute for Water Research has identified a new outback water source and developed new techniques to map and target water resources that can be applied in remote areas across Australia and throughout the world.

A series of research reports have now been released as part of the Institute’s Facilitating Long-term Outback Water Solutions (G-Flows) Stage 3 project. This builds on two earlier stages of the G-Flows program, a collaboration between CSIRO, Flinders University and the South Australian Department for Environment and Water (DEW) that was initiated in 2011. The research program has brought together a team of over 20 staff with expertise in hydrogeology, hydrology, geophysics, groundwater modelling, spatial analysis and programming.

The first two stages of G-Flows (completed by 2015) developed and applied new and innovative geophysical techniques in various parts of South Australia, including the Musgrave Province, the north-east and north-west Gawler Craton, parts of the Frome Embayment in the east and the northern Eyre Peninsula. The third stage (2017-2020) has focused on groundwater in the Anangu Pitjantjatjara Yankunytjatjara (APY) Lands and the role that large buried palaeovalley systems can play as potential groundwater resources for community and enterprises. Palaeovalleys are ancient, buried river valleys formed when climatic conditions were different, and wetter, than they are today. Although they are not active on the surface they can form good quality aquifers and store groundwater.

The team identified and mapped several groundwater resources and developed a range of tools and techniques that can be used to assess the potential for suitable groundwater resources in any remote, arid and data poor regions. The final summary report of the G-Flows Stage-3 project outlines the work undertaken to:

  • map palaeovalley locations with significantly improved accuracy across the APY Lands
  • use multiple lines of evidence to investigate palaeovalley evolution, aquifer character and palaeovalley architecture, groundwater chemistry, recharge and flow.

This research will help reduce the significant risks faced when water development proposals are being considered in remote areas and allow for more informed decision-making for sustainable water supplies. It will also reduce project assessment times, contributing substantially to economic outcomes in South Australia, and ensure that economically-viable mining developments are not impeded by a lack of information on suitable water sources.

Key findings
An ancient palaeovalley was discovered and yielded water in a remote part of the APY Lands located in north western South Australia.

Wells were drilled in the targeted palaeovalley and they showed relatively high yields and low salinity groundwater (<1000 mg/L). The water-bearing formation is buried under tens of meters of ancient sediments and was located using a geophysical model of the area developed from airborne electromagnetic (AEM) survey data.

Drill and borehole data was used to confirm the AEM data , which was then used to develop a 3D geological model of the Musgrave Province in the APY Lands.

Interpreted geological section (lower panel) for the Lindsay East Palaeovalley transect. Top panel is the smooth model conductivity depth section with interpreted geology overlain.

Three-dimensional geological model of the Lindsay West and Lindsay East palaeovalley systems with regional road network and communities.

Water chemistry, environmental tracer analyses, and groundwater modelling were undertaken to better understand the rate of groundwater recharge and the movement of water through the landscape. Drilling identified at least three groundwater aquifers; a shallow phreatic water-table of calcareous mixed sand plain deposits; an interlayered coarse-grained sandstone and clay horizon and a very fine to coarse grained residual sand; and a saprolite/fractured rock aquifer that underlays the palaeovalley sedimentary rocks. While data is preliminary, the coarse-grained sandstones shows promise as a productive aquifer, with development yields varying between 5 and 20 L/s and salinities <1000 mg/L total dissolved solids (TDS).

Groundwater recharge was estimated to be between 2–20 mm/year on the ranges and between 0.5 and 10 mm/year on the alluvial plains. Groundwater flow and age modelling were undertaken to test different plausible conceptual models of the groundwater regime within the palaeovalley to aid the understanding of the available groundwater resource. Groundwater ages in the upper part of the valley-fill sequences were ~900 years, but over 8500 years in the deeper parts of the palaeovalleys.

The team also developed the Groundwater Knowledge Integration System (GKIS), a framework for groundwater prospectivity mapping, to help target drilling locations for future groundwater resource investigations in remote areas elsewhere. The GKIS can be updated as new information becomes available and can be used to extrapolate across data poor areas.

With a full toolkit of proven techniques and the GKIS groundwater prospectivity mapping resource, the G-Flows program has benefits far beyond the study site. The AEM geophysical interpretation techniques developed in stage 1 of the program have already been used by DEW to identify more secure groundwater supplies for a number of Aboriginal communities in the Musgrave Province in the APY Lands. The G-Flows Stage 3 project has built on this with additional information and interpretation so that these techniques will not only help to locate and characterise groundwater sources in the APY Lands – they can be used to search for deep groundwater resources in other remote landscapes across Australia and internationally.

Contact Neil Power (DEW) or Tim Munday (CSIRO) for more information about the program or Institute Director Dr Kane Aldridge to discuss our collaborative research programs.

Research reports
Munday, T., Gilfedder, M., Costar, A., Blaikie, T., Cahill, K., Cui, T., Davis, A., Deng, Z., Flinchum, B., Gao, L., Gogoll, M., Gordon, G., Ibrahimi, T., Inverarity, K., Irvine, J., Janardhanan, S., Jiang, Z., Keppel, M., Krapf, C., Lane, T., Love, A., Macnae, J., Mallants, D., Mariethoz, G., Martinez, J., Pagendam, D., Peeters, L., Pickett, T., Raiber, M., Ren, X., Robinson, N., Siade, A., Smolanko, N., Soerensen, C., Stoian, L., Taylor, A., Visser, G., Wallis, I., and Xie, Y. (2020) Facilitating Long-term Outback Water Solutions (G-Flows Stage 3): Final Summary Report. Goyder Institute for Water Research Technical Report Series No. 20/08, Adelaide, South Australia. ISSN: 1839-2725

Davis, A., Flinchum, B., Munday, T., Cahill, K., Peeters, L., Martinez, J., Blaikie, T., Gilfedder, M., and Ibrahimi, T. (2020) Characterisation of a palaeovalley system in Anangu Pitjantjatjara Yankunytjatjara (APY) Lands of South Australia using ground-based hydrogeophysical methods. Goyder Institute for Water Research Technical Report Series No. 20/05, Adelaide, South Australia. ISSN: 1839-2725

Keppel, M., Costar, A., Krapf, C., and Love, A. (2018) G-FLOWS Stage 3: Anangu Pitjantjatjara Yankunytjatjara (APY) Lands Drilling Program, north-western South Australia. Goyder Institute for Water Research Technical Report Series No. 19/39, Adelaide, South Australia. ISSN: 1839-2725

Love A., Costar A., Krapf C., Xie Y., Wallis I., Lane T., Keppel M., Inverarity K., Deng Z., Munday T. and Robinson N. (2020) G-FLOWS Stage 3: Hydrogeological conceptual understanding of the APY Lands groundwater system including the Lindsay East Palaeovalley. Goyder Institute for Water Research Technical Report Series No. 20/06, Adelaide, South Australia. ISSN: 1839-2725

Munday, T., Taylor, A., Raiber, M., Soerensen, C., Peeters, L., Krapf, C., Cui, T., Cahill, K., Flinchum, B., Smolanko, N., Martinez, J., Ibrahimi, T. and Gilfedder, M. (2020) Integrated regional hydrogeophysical conceptualisation of the Musgrave Province, South Australia. Goyder Institute for Water Research Technical Report Series No. 20/04, Adelaide, South Australia. ISSN: 1839-2725

Peeters, L.J.M., Cui, T., Pickett, T., Gilfedder, M., Mallants, D., Taylor, A., Jiang Z., Flinchum, B., Cahill, K., Munday, T. (2020) Groundwater Knowledge Integration System (GKIS): Probabilistic groundwater prospectivity mapping with iterative updating of conceptualisation. Goyder Institute for Water Research Technical Report Series 20/01, Adelaide, South Australia. ISSN: 1839-2725

Tags: Commonwealth Scientific and Industrial Research Organisation (CSIRO) Department for Environment and Water (DEW) Economic Development Flinders University Groundwater South Australia Water for Industry

Other News

Dr Alec Rolston has been appointed Director of the Goyder Institute for Water Research. The Institute’s Management Board made this appointment after a wide national search for candidates. Dr Rolston has wide experience in water research and
We are delighted to welcome three new staff members who have recently joined the Goyder Institute team to help deliver the Institute’s new Research Centre in Goolwa. The Centre will undertake a range of work to

Photo Gallery

Chris Wright

Manager Water Science, DEW

Chris Wright holds significant experience in public sector senior leadership, having led policy, scientific and operational business units over the last twelve years in both State and Commonwealth government agencies. Chris has excellent experiences in leading policy and strategy formulation. He is skilled in building and maintaining networks across the public and private sectors to facilitate business delivery; leading and negotiating with others to achieve outcomes; and in bridging the science-policy gap, drawing on earlier roles in geospatial information systems (GIS) consulting. Chris’s formal qualifications include a Bachelor of Social Science, a Masters of Spatial Information Science and graduation from the AICD Company Directors course in 2019.

Dr Ilka Wallis

Senior Lecturer, Flinders University

Dr Ilka Wallis is a hydrogeologist with areas of expertise in quantitative hydrogeology and geochemistry. Ilka focuses on the development of reactive geochemical transport models which integrate fundamental processes that are normally studied in isolation (hydrogeological, mineralogical, geochemical and biochemical).

Ilka is also an Adjunct Professor, Department of Civil Engineering, University of Manitoba, Canada since 2017.

Peter Goonan

Environmental Science Branch, EPA

Peter Goonan is the Principal Aquatic Biologist in the Environmental Science Branch of the EPA. He has over 30 years’ experience monitoring the condition of aquatic ecosystems in SA and assessing the environmental effects caused by discharges, deposits and contaminants entering inland and coastal waters. He specialises in aquatic invertebrate identification and their responses to contaminants and water quality stressors. He also provides expert professional advice relating to water quality risks, regulation, policy, and strategic directions, and represents the EPA as an expert witness in court.

Dr Paul Monis

Manager, Research Stakeholders and Planning, SA Water

Dr Paul Monis is a technical expert within SA Water’s Business Services group, which provides scientific expertise to support the delivery of water and wastewater services to SA Water’s customers. He has specialist expertise in the areas of biotechnology and microbiology, with almost 20 years’ experience applying DNA-based and other technologies to address water quality challenges posed by microorganisms, especially enteric pathogens. Dr Monis also holds title of Adjunct Associate Professor at Flinders University, the University of Adelaide and UniSA.

Jennie Fluin

Principal Advisor Research Partnerships, DEW

Jennie’s role in the Department for Environment and Water (DEW) allows her to foster and strengthen opportunities for researchers to better connect with government to enable evidence-based decision making. Jennie has extensive experience working in both universities and government, allowing her to bridge the divide between the two sectors. She is focused on connecting natural resource researchers with natural resource decision makers, and facilitating fit for purpose partnerships.

Dr Tanya Doody

Principal Research Scientist, CSIRO

Dr Tanya Doody is a Principal Research Scientist working on high impact spatial eco-hydrological projects within CSIRO’s Land and Water Business Unit. Dr Doody leads the Managing Water Ecosystems Group, based in Adelaide, Albury and Canberra and has significant experience in quantifying the water requirements of vegetation and at times, their impact on water resources. This involves ecophysiological field-based research to underpin remote sensing tools to scale regionally to improve our understanding of the effect of flood regimes on the health of water-dependent ecosystems on the Murray-Darling Basin floodplains. Additional research includes investigating the ecological response of vegetation to water availability and environmental water to inform integrated basin water planning and management.

Professor Lin Crase

Dean of Programs (Accounting & Finance), UniSA

Professor Lin Crase is Professor of Economics and Dean of Programs (Accounting & Finance) at UniSA. He joined UniSA in February 2016 as Head of School of Commerce. Prior to commencing at UniSA, Lin was Professor and Director of the Centre for Water Policy and Management at La Trobe University.

Lin’s research has focused on applied economics in the context of water. He has analysed water markets and the property rights that attend them, water pricing and numerous applications of water policy. Whilst his expertise includes the Murray-Darling Basin in Australia, he has also worked on projects in south Asia, Japan and Europe. Lin has published over 100 journal articles, numerous book chapters, four books and a range of other papers and opinion pieces.

Professor Justin Brookes

Director, Water Research Centre, University of Adelaide

Justin has broad research interests in limnology and water treatment with a primary focus on coupling between hydrodynamics, biology and water quality contaminants such as cyanobacteria and pathogens. He is a founding member of the management committee of the IWA Specialist Group on Lake and Reservoir Management and member of the Steering Committee for the Global Lakes Ecological Observatory Network.

Justin has a PhD and a Bachelor of Science degree with Honours from the University of Adelaide.

Daniel Flaherty


Daniel Flaherty is the Accountant for the Goyder Institute for Water Research.

Daniel has extensive experience in higher education having worked in senior financial management roles at the University of South Australia, Flinders University and the University of Adelaide over the past 26 years. Daniel has also been a Board Director on a number of university related entities. Prior to that, Daniel has worked in a range of agencies in the Commonwealth and State Governments.

Daniel is a Fellow of CPA Australia and has a Bachelor of Economics from the University of Adelaide.

Dr Alec Rolston

Interim Director

Alec Rolston joined the Institute in 2021 as Research Program Manager of the Goyder Institute’s research projects in the Healthy Coorong, Healthy Basin program. He has extensive experience in integrated water resource management, integrated catchment management, drinking water source protection and wetland ecology, conservation and management across Europe and Australia.

Alec holds a PhD from the National University of Ireland Maynooth and has worked with An Fóram Uisce|The Water Forum and the Dundalk Institute of Technology in Ireland as well as the MANTEL Innovative Training Network across Europe.

Alec spent his early career in Adelaide working with Flinders University through the Coorong, Lower Lakes and Murray Mouth (CLLAMM) Ecology Research Cluster and within the Department for Environment and Water.

Daniel Pierce

Research and Development Officer

Daniel Pierce has managed research projects at the Goyder Institute for Water Research since November 2017 under both the second and third terms of the Institute.

Daniel brings experience in project management and knowledge transfer and application from 4 years working as a Senior Hydrogeologist in the Department for Environment and Water (DEW) in South Australia and from 13 years of private sector work in environmental management, science and engineering in Australia and the South Pacific. His work with DEW has included providing technical advice to the development and revision of Water Allocation Plans around South Australia in collaboration with researchers and policy makers, and managing a team of groundwater modellers and hydrogeologists involved in an assortment of water resource management issues.

Daniel has a Bachelor of Engineering (Hons, Environmental) and a Bachelor of Science (Geography) from the University of Western Australia.

Professor Enzo Lombi

Dean of Research, UniSA STEM

Professor Lombi’s main contributions to environmental research cover various aspects of contaminant risk assessment, biogeochemistry, ecotoxicology and waste management. Furthermore, the methodological development he has pursued in his research has provided the basis for collaborative efforts in a variety of research areas ranging from soil fertility and plant physiology to human health issues related to contaminant uptake via occupational exposure and diet. In the last few years he has been increasingly focusing on the transformation and toxicity of manufactured nanomaterials in the environment.

Dr Carmel Pollino

Research Director Land and Water, CSIRO

Dr Carmel Pollino is a Research Director for Land and Water at CSIRO. She has 20 years of experience working on water issues in Australia and throughout Asia. Carmel has degrees in science and environmental law and works across the science and policy interface. Significant areas of research in Environmental Flows, Hydrology, Ecology and Integrated River Basin Planning. Carmel is the lead and also a contributor to global working groups on water and has published widely in this domain.

Professor Bronwyn Gillanders

Head of School of Biological Sciences, The University of Adelaide

Professor Bronwyn Gillanders is interim Head of School of Biological Sciences at the University of Adelaide. Prof Gillanders completed her BSc at the University of Canterbury, MSc at the University of Otago and her PhD at the University of Sydney. She has a research background in environmental science focused predominantly on freshwater and marine ecology.

Her research interests include integrated marine management; coastal carbon opportunities; multiple use activities and cumulative impact assessment; biology, ecology and fisheries of cephalopods; stocking and provenance of fish; plastics in the marine environment including in seafood; use of fish bones (and other calcified structures) for assessing ecological and environmental change. She has trained and mentored ~70 Honours and Higher Degree Research students and shaped the future of 1000s of students through her undergraduate teaching. She is passionate about encouraging capable women to enter and remain in science careers.

Dan Jordan

Director, Water Security, Policy and Planning, Department for Environment and Water (DEW)

Dan Jordan is the Director, Water Security, Policy and Planning, Department for Environment and Water (DEW). Dan is also the Basin Officials Committee Alternate Member for South Australia.

Professor Okke Batelaan

Dean, School of the Environment, Flinders University

Professor Okke Batelaan is a graduate of the Free University of Amsterdam, Netherlands (MSc – Hydrogeology) and of the Free University Brussels, Belgium (PhD – Engineering). He worked for more than 20 years at the Free University Brussels and also led the hydrogeology group at the KU Leuven, Belgium since 2006. He was chairman of the Interuniversity Programme in Water Resources Engineering.

Since 2012 Okke Batelaan is Strategic Professor in Hydrogeology and currently Dean of the School of the Environment, Flinders University. Okke has broad experience in teaching groundwater hydrology, groundwater modelling, GIS and remote sensing for hydrological applications. He was supervisor of more than 140 MSc and 25 PhD students. He has extensive research experience and a publication record in shallow groundwater hydrology and modeling, recharge-discharge estimation and modeling, urban hydrology and distributed modelling, ecohydrology and impacts of land use and climate change on groundwater systems. He coordinated and participated in a large number of projects in Europe, Africa, South America, Asia and Australia. He is editor-in-chief of Journal of Hydrology: Regional Studies and of MDPI-Hydrology.